Random sampling with hockey sticks Oo! Des bonbons! Je vais inventer l'échantillonnage aléatoire <u>sans</u> remplacement!

Recap: Balls in bins I

Putting *n* identical balls into *m* bins: coupon collector's but with a single magic sugar puffs packet that generates a stream of dinosaurs

What is the probability of getting every one of m dinosaurs in a stream of n from the packet? How many ways of putting n identical balls into m bins? How many of these place at least one ball into each bin?

Recap: Balls in bins II

So now we have m bins into which we place n balls with repetition allowed and we want at least one ball in each bin.

Basic count: number of ways to place n balls into m bins: $\binom{m-1+n}{m-1}$

E.g. 6 balls into 4 bins: take 4-1+6 places. Choose 4-1 bin markers and the remaining 6 places are occupied by the balls.

Recap: Balls in bins III

What is the probability of getting every one of n dinosaurs in a stream of m from the packet?

How many ways of putting n identical balls into m bins?

$$\begin{pmatrix} m-1+n \\ m-1 \end{pmatrix}$$

How many of these place at least one ball into each bin?

Take m of the n balls and place one in each bin.

Now place the remaining n-m balls in all possible ways:

$$\binom{m-1+n-m}{m-1} = \binom{n-1}{m-1}$$

So probability of a surjection with 5 balls from the magic packet is

$$\frac{\binom{4}{3}}{\binom{8}{3}} = \frac{4}{56} \approx 0.07$$

Trying it out experimentally

$$\begin{pmatrix} m-1+n \\ m-1 \end{pmatrix}$$

m-1+n Let's take m=4 bins and n=5 balls. I'll generate 5 random numbers in the range 1, ..., 4.

$$\binom{n-1}{m-1}$$

Do this 1000 times. Check how many trials have every bin nonempty.

$$\frac{\binom{4}{3}}{\binom{8}{3}} = \frac{4}{56} \approx 0.07$$

I get 236. Try again: 250. Again: 256. Far higher than 7% predicted.

What am I doing wrong?

First rookie mistake!

The words "place 5 **identical** balls into 4 bins" means it happens **simultaneously**. The balls are not identical if they arrive one by one.

E.g. toss a coin 5 times. This is putting 5 balls into a bin called H and a bin called T.

The outcomes are:	Н	Т
	5	0
	4	1
	3	2
	2	3
	1	4
	0	5

What is the probability of 5 heads? From the table it is 1/6.

Coin tossing: observed or not?

E.g. toss a coin 5 times. This is putting 5 balls into a bin called H and a bin called T.

But what if we **watch** as the coin is tossed. Then the outcomes we may observe are:

What is the probability of 5 heads? From the table it is 1/32. The table is a **function** from a sequence of 5 tosses to two outcomes.

So if we don't watch the coin tossing we are much more likely to get 5 heads!?

Putting balls in bins is a 'process' isn't it?

But saying "place 5 identical balls into 4 bins" seems to suggest a physical act of 'placement'. In fact our application really did mean **simultaneous** placement:

n players commit privately to a placement of 2 tokens each on the cells of an $\sqrt{m} \times \sqrt{m}$ grid.

Here, n = 3, m = 9.

They reveal their choices and their stake money is shared equally according to the tokens which single-occupy cells.

The grid is cosmetic. Really I'm just putting 6 tokens into 9 bins.

But the whole example is a bit cosmetic really, isn't it? How often do you ask questions about pre-existing configurations?

And when can you be sure that it isn't a function that your probabilities are measuring.

The magic packet (corrected)

What is the probability of getting every one of n dinosaurs in a stream **simultaneous burst** of *m* from the packet?

How many ways of putting n identical balls into m bins?

$$\begin{pmatrix} m-1+n \\ m-1 \end{pmatrix}$$

How many of these place at least one ball into each bin?

Take m of the n balls and place one in each bin.

So probability of a surjection with 5 balls from the magic packet is

How do I simulate this and see, experimentally, a rough 7% figure?

$$\frac{\binom{4}{3}}{\binom{8}{3}} = \frac{4}{56} \approx 0.07$$

Balls in bins: random sampling I

Basic count: number of ways to place n balls into m bins: $\binom{m-1+n}{m-1}$

$$\begin{pmatrix} m-1+n \\ m-1 \end{pmatrix}$$

E.g. 6 balls into 4 bins: take 4-1+6 places. Choose 4-1 bin markers and the remaining 6 places are occupied by the balls.

Obvious way to choose a random placement of n balls into m bins: choose m-1bin marker placements out of m-1+n. But this is choosing a random subset.

Balls in bins: random sampling II

Choosing a random subset is well-studied. E.g. this application by Jim Pitman of the Abel–Hurwitz binomial theorem:

But maybe we can find something simpler for the specific case of randomly putting balls in bins?

Balls in bins: random sampling III

Basic idea based on nested sums (following Butler and Karasik, 2010):

$$\sum_{i_1=0}^{n} \sum_{i_2=0}^{i_1} \cdots \sum_{i_m=0}^{i_{m-1}} 1 = \binom{m+n}{n}$$

putting m + 1 balls into n bins

(m + 1)-tuple of nonnegative integers summing to n.

Balls in bins: random sampling IV

This will place n balls into m + 1 bins!

$$\sum_{i_{1}=0}^{n} \sum_{i_{2}=0}^{i_{1}} \cdots \sum_{i_{m}=0}^{i_{m-1}} 1$$

$$\uparrow$$

$$n \geq i_{1} \geq i_{2} \geq \cdots \geq i_{m} \geq 0$$

$$\uparrow$$

$$(n-i_{1},i_{1}-i_{2},\ldots,i_{m}-0)$$

Choose a random leaf by repeatedly choosing a tree branch, starting at the root. This will give values for

$$i_{\scriptscriptstyle 1},i_{\scriptscriptstyle 2},\ldots,i_{\scriptscriptstyle m}$$

which will give us our (m + 1)-tuple

Balls in bins: random sampling V

E.g. place 3 balls into 4 bins

Choose branches: 2, 1, 1
$$3 \ge i_{1} \ge i_{2} \ge i_{3} \ge 0$$

$$2 \qquad 1 \qquad 1$$

$$(n-i_{1},i_{1}-i_{2},i_{2}-i_{3},i_{3}-0)$$

$$(3-2, \ 2-1, \ 1-1, \ 1-0)$$

$$(1, \ 1, \ 0, \ 1)$$

Choose branches: 3, 3, 3
$$3 \ge i_{1} \ge i_{2} \ge i_{3} \ge 0$$

$$3 \quad 3 \quad 3$$

$$(n-i_{1},i_{1}-i_{2},i_{2}-i_{3},i_{3}-0)$$

$$(3-3, \ 3-3, \ 3-3, \ 3-0)$$

$$(0, \ 0, \ 0, \ 3)$$

Second rookie mistake!

Choosing tree branches non-uniformly

There are
$$\binom{6}{3}$$
 = 20 leaves.

Each leaf is a placement of 3 balls into 4 bins.

We need each leaf to be chosen with probability 1/20.

This subtree accounts for 10 of the 20 leaves.

So this branch must be chosen 50% of the time.

Choosing tree branches non-uniformly

The hockey stick identity

Combinatorial proof:

$$= \binom{n}{m}$$

$$+\binom{n-1}{m}$$

$$+\binom{n-2}{m}$$

$$+\binom{n-3}{m}+\dots$$

Chosing tree branches using hockey stick weightings

1 2 3 4 5 6 7 8 ... A hockey stick sampling tree 3 balls in 6 bins 56 6 15 20 15 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 15 7...21 3 < 2...4 35 22...56 6 5...10 $i_{1} = 2$ $i_{2} = 2$ $i_{3} = 1$ $i_{5} = 0$ $i_{4} = 0$ $\geq 2 \qquad \geq 1$ $\geq 0 \geq 0$

The magic packet (simultated)

What is the probability of getting every one of *n* dinosaurs in a stream simultaneous burst of *m* from the packet?

Probability of a surjection with 5 balls from the magic packet is

total := 0:
for j from 1 to 100 do
onto := 0:
for i from 1 to 1000 do
if trial(4, 5, 0) = 0 then onto := onto + 1 end;
end:
total := total +
$$\frac{onto}{1000}$$
:
end:
evalf $\left(\frac{total}{100}\right)$;

$$\frac{\binom{4}{3}}{\binom{8}{3}} = \frac{4}{56} \approx 0.07$$

0.07161000000

0.07142857143

A rookie question!

10 coin tosses.

If all are heads then gun fires.

Is the cat watching the coin??

