Partial Fields and Matroid Representation

What is a matroid?

Matroids capture the combinatorial properties of a finite set of vectors. They play a role in discrete mathematics analogous to that played by topology in continuous mathematics or group theory in algebra.

Theme of Talk

In essence, matroid theory is a branch of modern projective geometry.

Canonical Example

 \mathbb{F} a field; S a set of vectors over \mathbb{F} . We have a matroid whose independent sets are the subsets of S that are linearly independent over \mathbb{F} .

Say $\mathbb{F} = \mathbb{R}$. Let $S = \{a, b, c, d, e, f, g\}$. Then

defines a matroid M on S.

 F_7^-

- A matroid is representable over 𝑘 if it can be obtained from a set of vectors over 𝑘.
- ► The vectors in *S* can be compactly described as the columns of a matrix *A*. In this case *M* is the column matroid of *A*.
- ► A set of j columns in a matrix is independent if and only if it contains a j × j submatrix whose determinant in nonzero.
- Row operations do not affect linear independence of columns, therefore they do not change the matroid.

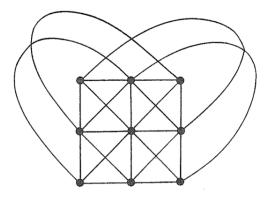
Different Fields, Different Matroids

Recall the matrix

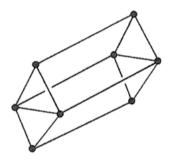
But change the field to GF(2).

Which matroids are representable over which fields?

- *F*[−]₇ is representable over 𝔽 if and only if the characteristic of 𝔅 is not equal to 2.
- ► F_7 is representable over \mathbb{F} if and only if the characteristic of \mathbb{F} is equal to 2.







Regular Matroids

A matrix over $\mathbb R$ is unimodular if every square submatrix has a determinant in $\{0,1,-1\}.$

A matroid is regular if every it can be represented by a unimodular matrix.

Theorem (Tutte 1954)

The following are equivalent.

- M is regular.
- *M* is representable over every field.
- ▶ *M* is representable over *GF*(2) and *GF*(3).
- ▶ *M* is representable over *GF*(2) and \mathbb{F} where \mathbb{F} is any field whose characteristic is not 2.

Theorem

Let \mathcal{F} be a set of fields containing GF(2) and \mathcal{M} be the set of matroids representable over all fields in \mathcal{F} . Then \mathcal{M} is either the class of regular matroids, or the class of binary matroids.

Only two classes arise.

Ternary Matroids

M is ternary if it representable over GF(3). What classes arise there?

Dyadic Matroids

A matrix over \mathbb{R} is dyadic if all nonzero subdeterminants are in $\{\pm 2^i : i \in \mathbb{Z}\}$. A matroid is dyadic if it can be represented by a dyadic matrix.

Theorem

The following are equivalent.

- M is dyadic.
- *M* is representable over GF(3) and GF(5).
- *M* is representable over GF(3) and \mathbb{Q} .
- *M* is representable over GF(3) and \mathbb{R} .

What about GF(3) and \mathbb{C} ?

Sixth-root of unity matroids

A matrix over \mathbb{C} is *sixth-root of unity* if every nonzero subdeterminant is a sixth-root of unity.

A sixth-root of unity matroid is one that can be represented by a sixth-root of unity matrix.

Theorem

The following are equivalent.

- *M* is a sixth-root of unity matroid.
- *M* is representable over GF(3) and GF(4).

What about GF(3) and \mathbb{C} ?

Near-regular matroids

A matrix over $\mathbb{Q}(\alpha)$ is near-regular if all nonzero subdeterminants are in $\{\alpha^i(\alpha-1)^j: i, j \in \mathbb{Z}\}.$

A matroid is near-regular if it can be represented by a near-regular matrix.

Theorem

The following are equivalent.

- ► M is near-regular.
- ▶ *M* is representable over all fields other than possibly GF(2).
- ▶ *M* is representable over *GF*(3) and *GF*(8).

Theorem

Let \mathcal{F} be a set of fields containing GF(3). Then there is an $i \in \{2, 3, 4, 5, 7, 8\}$ such that the class of matroids representable over all fields in \mathcal{F} is the class of matroids representable over GF(3) and GF(i).

What is a partial field?

- ► Essentially a partial field is a set P containing {0,1} with a multiplicative group and a partial addition.
- Can develop a theory of matroid representation over partial fields.
- Canonical examples. Let 𝔅 be a field and let G be a subgroup of 𝔅* containing −1. Then G ∪ {0} with the induced operations is a partial field.
- Can also define a partial field by generators and relations in a natural way.

Homomorphisms

Let \mathbb{P}_1 and \mathbb{P}_2 be partial fields. Then a function $\phi : \mathbb{P}_1 \to \mathbb{P}_2$ is a homomorphism if blah blah blah and, whenever x + y is defined, then $\phi(x) + \phi(y)$ is defined.

Lemma

If there is a non-trivial homomorphism from \mathbb{P}_1 to \mathbb{P}_2 , then every matroid representable over \mathbb{P}_1 is also representable over \mathbb{P}_2 .

Standard Constructions

Matroids representable over a partial field are closed under standard matroid operations, ie duality, direct sums, 2-sums, minors etc.

This reduces many combinatorial/geometric arguments to routine algebra.

Theorem (Vertigan)

Every partial field can be obtained by restricting to a subgroup of the group of units of a commutative ring.

Theorem (Vertigan)

Let $\mathcal F$ be a set of fields.

- The matroids representable over all fields in *F* is the class of matroids representable over a partial field.
- ► The matroids representable over at least one field in *F* is the class of matroids representable over a partial field.

Theorem (Vertigan)

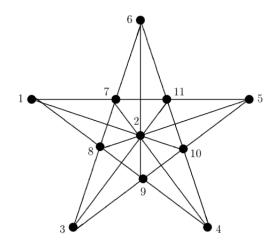
If M is representable over some partial field. Then there exists a field over which M is representable.

Golden-ratio matroids

Let r and 1 - r be the roots of $x^2 - x - 1$ over \mathbb{R} , and let \mathbb{GM} denote the set $\{r^i(1 - r)^j : i, j \in \mathbb{Z}\}$ with the induced operations from \mathbb{R} . Then \mathbb{GM} is the golden-ratio partial field. Matroids representable over \mathbb{GM} are golden-ratio matroids.

Theorem (Vertigan)

A matroid is representable over GF(4) and GF(5) if and only if it is a golden-ratio matroid.



:-(And then the subject died.

:-) Until Stefan van Zwam.

Associates and fundamental elements

An element a of a partial field is fundamental if a - 1 is defined. If a is fundamental, then all members of

$$\left\{a, 1-a, \frac{1}{1-a}, \frac{a}{a-1}, \frac{a-1}{a}, \frac{1}{a}\right\}$$

are fundamental. The members of the above set are the associates of *a*.

Representations of 4-point lines

Consider a 4-point line represented by

$$\begin{array}{cccc} d & e & f & g \\ \begin{pmatrix} d_1 & e_1 & f_1 & g_1 \\ d_2 & e_2 & f_2 & g_2 \end{pmatrix} \end{array}$$

Using row operations and column scaling, this is equivalent to

Then x is the cross ratio de : fg (or something like it!) Note that x is fundamental.

The associates of x are precisely the set of values you get for other cross ratios involving d, e, f, and g.

Nothing new under the sun

- ► Fundamental elements are allowable cross ratios in "4-point line" minors of P-represented matroids.
- ► Harmonic and Equienharmonic cross ratios.

Restatement of Vertigan's Theorem

A matroid is representable over GF(4) and GF(5) if and only if it has a representation over \mathbb{R} with the property that the cross ratios of every induced representation of every 4-point line minor are golden ratios - or associates thereof.

Quaternary matroids

What about matroids representable over fields containing GF(4)?

- The 2-regular partial field naturally generalises near regular; 2-regular matroids are representable over all fields of size at least 4.
- Class of matroids representable over all fields of size at least 4 strictly contains 2-regular matroids.
- There are an infinite number of classes that arise when we consider matroids representable over GF(4) and other fields.

Overall feeling

It seems like we've hit a bit of a wall. Has the algebraic bus has reached its terminus and are we back to grungy geometric/combinatorial/connectivity arguments?

I don't really believe it.

let $\mathcal{R}(q)$ denote the set of matroids representable over all fields with at least q elements.

Theorem

There are infinitely many Mersenne primes if and only if, for each prime power q, there is an integer m_q such that a 3-connected member of $\mathcal{R}(q)$ has at most m_q inequivalent GF(7)-representations.