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1 Introduction—the group GL(n)

The general linear group is the group of allk n non-singular matrices. Notice that
this is indeed a group; it satisfies the group axioms,

e The product of any twa x n hon-singular matrices is anothek n non-singular
matrix.

e Matrix multiplication is associative.

e The inverse element to any group element is given by the inverse matrix. This is
always possible because the element&6{n) are non-singular.

e The identity element of the group is thex n identity matrix.

Further the grouge=L(n) is a Lie group, this just means that the multiplication and
the map which sends every element to its inverse are both differentiable maps. This
is easy to see since the maps can be defined in terms of addition, multiplication and
division by non-zero numbers.

We will usually take the ground field, the set containing the matrix entries, to be
complex numbers. This is just for simplicity, it is sometimes more useful to know the
case where the ground field is the real numbers or some finite field. It is possible to say
something about these cases but as usual, when we use complex numbers the theory is
more complete. We can writ€ L(n, R) to distinguish the case where the ground field
is the real numbers. )

As a manifold the groug:L(n) will be an open set in the spa€®' , the comple-
ment of the closed set consisting of the singular matrices. So the group has complex
dimensionn?, real dimensior2n?. Notice that the groui: L(n, R), real dimension
n?, has 2 disjoint components, a piece containing matrices with positive determinant
and a bit with the negative determinant matrices. Further notice that the matrices with
positive determinant form a subgroup@f.(n, R), but the negative matrices do not.



2 Representations

A representation of a group is a linear action of a group on a vector space. To each
group elemeny, we associate a linear mappifgg). This must be done in such a way
that the mapping obeys,

L(g1)L(g2) = L(g192), forall g1, g2 € GL(n).

The L(g)s must be linear maps, that is,

L(g)(vi +va) = L(g)v1 + L(g)va.

This means that once we have chosen a basis for the vector space, we can identify the
linear maps with matrices. From the first condition above we can see that the identity
element of the group must be mapped to the identity matrik(e) = I. Also that
inverse of a group element must be mapped to the inverse mafgx,!) = L(g)~!.
If the vector space is: dimensional then the invertible linear transformations are just
GL(m). Hence we could view a representation as a homomorphism €tdifn) to
GL(m).

L:GL(n) — GL(m).

The dimension of such a representation wouldrbe

However, this is not the usual way to view representations, in part because it de-
pends on a choice of basis for the vector space. Really we want to define the represen-
tation without having to specify a particular basis. One way to do this is to assume that
the representation we get after a change of basis is equivalent to the original represen-
tation. For example, suppose that under a change of basis in the vector space all vector
v becomeu = Av, whereA is a non-singularm x m matrix. In this new basis our
original representatioh will become,

g— AL(g)A™',  forallg € GL(n).

So equivalent representations are related by a similarity transformation.
In the next section we look at some example and try to explain why this concept is
so useful.

3 Examples
3.1 The Standard rep.

Let V be ann-dimensional vector space. The setok n matrices act on this space.
This is the standard representation®f (n), each group element is mapped to its
matrix.



3.2 The Dual rep.

The dual of a vector spadé, is the space of linear functionals dh If {e;, es,...,e,}
is a basis fol then the dual’* has a basi¢f, fs, ..., f,} such that,

_J1, ifi=y
fi(e;) = {0, otherwise

The evaluation maff;(e;) can be thought of as the product of a row vector with a
column vector, suppose; is an n-dimensional column vector with a 1 in row and
zero's everywhere else, suppdsés similarly a column vector this time with the only
non-zero entry in thg-th row, the evaluation can now be written,

fi(e;) = ijei
Now if we transform the vectors il according toL(g)e; then to preserve the results
of the evaluation the elements of the dual vector spadteust transform according to
L(g9)~T f;, where the superscriptT denotes the transpose of the inverse. This is the
dual representation of the group. Notice that thg entry in L(g)~7 will be the (i)
minor of L(g) divided by its determinant.

3.3 The Determinant rep.

Consider the map : g — det(g). This is a 1-dimensional representation(ék(n).
Remember thadet(g1g2) = det(g1) det(ga).
In fact there are several 1-dimensional representations, for any positive ipteger
we have a representation,
AP g det(g)?.

Whenp = 0, the representation is called the trivial representation, we will write this
as,1:g+—1.

3.4 Linear subspaces—exterior powers

LetV be am-dimensional vector space as usual, but assume:thas. Now consider

the 2-dimensional vector subspaced/ofA 2-dimensional subspace is defined by any
pair of linearly independent vectors. But of course may pairs of vectors define the same
plane. It is not too difficult to see that two pairs of vectarsy andx, y, define the
same plane iV if and only if they are related by,

X = ax + by, y=cx+dy

where (z Z € GL(2), thatis to sayid — bc # 0. These vectors can be written in

terms of the standard basis 6fas, for examplex = x1e; + zse3 + - - + z,€,. SO
in terms of these components the transformation above can be written,

G=(a)G)e =



This can be extended for pairs of components to,

(“@' @):(a b)(”f xi), 1<i<j<n.
Ui Uj c d)\yi yj

Now if we take the determinant of both sides we get

det<"”f” ffﬂ‘) :det<“ b)da(“ xj), 1<i<j<n.
Yi s c d Yi Y
Notice that for any pair of indicegj, the transformation just multiplies the quantity

det (;‘ Z) by a constant factor; the determinant of the transformation matrix
det (‘CL Z) This means we can use the quantities (xl i
in a projective space. If fact these are the well knomiﬂr:l?é%coggdinates,
Ti xj

. = det
Pij (yi Yj

Two different planes will have different 8tker coordinates (unless the difference is
just multiplication by a constant). However, not all sets didRer coordinates rep-
resent planes, only those that satisfy thelitiRker relations”. This leads us towards
the geometry of Grassmann manifolds, the manifold whose points-planes in an
n-dimensional vector space.

However, if we stay with the vector space defined by thielr coordinates, then
we can ask how does the grogfy.(n) act on this space? Let us write an arbitrary
element ofGL(n) as ann x n matrix with entriesd = (a;;). The effect of this on a
vectorx will be,

> , as coordinates

), 1<i<j<n.

x' = Ax,

or in terms of the components of the vector,
n
:L'Q:Zaikxk, i=1,...,n.
k=1
The corresponding action on thdiBker coordinates is given by,

/ /

’ x. x.
p;; = det ( H J)

K Yi ;i

— ot [ %171 + ATy aj1%1 + ATy
ayr + -+ GnYn @1y + o+ Ginln

n
_ Zdet ipTE Q41T
QikYr QiYL

k=1
n
= Z ;A4 det <1k xl)
=1 Y Y
= > (axaq — agag) det (z: Z)
1<k<l<n



= Z (aikail - ailaik)pkl~
1<k<I<n
This means that if we arrange theliBker coordinates in a vector then the transfor-
mation can be represented by a matrix whose elements arz xh2 minors of the
original transformatiom. This representation afL(n) is called the antisymmetric,
or exterior, square of the standard representation, Write6' L ().
All this generalises quite easily, for 3-dimensional subspaces tek& coordi-
nates are given by,
T, Tj Tk
pijk =det | vi y; k|,
Z Zj Zk
based on any three independent vectarg andz in the 3-space. The representation
of the groupG L(n) on these Ricker coordinates is given by the matBix< 3 minors
of the original transformatiom, this is \* GL(n) the exterior cube of the standard
representation.
As long ask < n we can form theith exterior power of the standard representa-
tion by taking the matrix ok x & minors of A. The representatioh” GL(n) is the
determinant representation we met in the previous subsection.

3.5 Polynomials—symmetric powers

Consider the space of all degree 2 homogeneous polynomials in 3 variables. A typical
polynomial here will have the form,

p(x1, T2, x3) = am% + 2bx1xo + 2cT123 + dx% + 2exqx3 + fxg,

this can be written rather neatly as a product of matrices,

a b ¢ T
p(x1, o, 23) = (21, 2, x3)| b d e To
c e f T3

The variables here;, o andx3 can be thought of as homogeneous coordinates in
a 2-dimensional projective space. The zero set of such a polynomial will be a conic
curve.

Now suppose we change coordinates, how should the coeffieignts f be trans-
formed in order that the conic curve is preserved? As usual we assume that the trans-
formation on coordinates is given by an elemeng&df(n) (in this case: = 3), that is
x' = Ax or in vector form,

el ail aiz ais €
/

Ty | = | @21 G22 Q23 T2 |,
/

T3 a3y asz a33 z3

or in component form,



If we write the coefficient matrix as,

a b ¢
B=1|b d e
c e f

then we can see that it must transform according to,
B ' =ATpA™!.

In older language this was called a substitution.
If the conic curve were actually a pair of straight lines, its equation would be,

(fiz1 + fowa + fazs)(hiz1 + hoxo + hazs) = 0.
In this case the symmetric coefficient matrix would be,

1 fl hl
BZE f2 (hl, hg, h3)+ h2 (fh f27 f3)
f3 hs

The vectorsf and h clearly transform according to the dual representation we met
above and hence we say that the maRittansforms according to the symmetric square
of the dual representation. This representation can be denoted(Syi®)*. The
asterisk is used here to denote the dual representation.

Clearly, we may extend these ideas into higher dimensions and higher degree poly-
nomials. However, the nice link with symmetric matrices disappears and we have to
use tensors. For example, for cubic polynomials we would replace the coefficient ma-
trix with a degree three symmetric tensgy;,, a general cubic polynomial is then given
by,

p(X) = Z bijkxixjxk.
ijk
Under a coordinate transformation the element of the tensor transform according to the
representation Syh@'L(n)*, that is the new elements will be given by,

/
ijk — Z blmnAliAmjAnk';
lmn

whereA,; is an element of the dual representation of the standard rep.

4 Operations on Representations

In this section we look at two standard ways to combine a pair of representations into
a third rep.

Supposd.(g) andM (g) are two representations 6fL(n). Then we can form their
direct sumL & M (g). If L is ak-dimensional representation andl is [-dimensional,



then their direct sum will bék + [)-dimensional. Matrices from the direct sum will

have the general form,
L 0
veare ="y

Notice thatl & M and M & L are different representations but it is easy to see that
these representations are equivalent.

Suppose that the vector space théy) acts on has a basif;, ..., e;} and the
space thaf\/(g) acts on has a basig, ..., €}, then the tensor product representa-
tion acts on a space with bags..,e; ® €;,...}. The action of the tensor product
representation on this basis is as follows,

L& M (g)(e; @ €j) = L(g)e; ® M(g)e;.
Remember that,
(ae; + be;) ® (cer + de;) = ac(e; ® €;) + ad(e; @ €) + be(e; ® €x) + bd(e; ® €;)

The symmetric and antisymmetric powers of representations that we met above can
be written in terms of the tensor powers of representation. The basis of an antisymmet-
ric power of ann-dimensional representatidn say/\’C L are,

1 .
e, Nej, N---Ne;, = o Z SIgN(T)er(iy) @ €x(in) @ -+ @ €x(iy),

wherel < i1 <ip < --- < i, < nandr ranges over all permutations of thendices

21y Zk-
Likewise the basis of the symmetric power Sybrwill can be thought of as,

1
€€y~ "€, = E Ze‘ﬂ'(il) ® Cr(iz) - €r(ix)»

here though, we can allow the indices to coincide.
As a small example we look at the symmetric and antisymmetric squares of a 3-
dimensional representation. The basis vectors for the antisymmetric square will be,

ejN\eqg = %(91@82—82@91)7 ejNeg = %(el@eg—eg@el), ex\e3 = %(826983—82@63).
For the symmetric square we get basis elements,
e% =e; ey, e% =e2 D ey, e?, =e3 Des,
and

1 1 1
eje; = 5(91@624-92@81), ejes = 5(91@934-63@91), eyes = 5(92@e3+92€963)-

Finally here we remark that when these operations are applied to several represen-
tations they obey some of the familiar laws of arithmetic, they are associative,

Lo(MaeN)=(LeM)&N, Le(MeN)=(LeM)eN.



Also the tensor product distributes over the direct sum,
LeMaeN)=(LoM)®d (L®N).

Moreover, the trivial representation, the one which sends every group element to the
number 1, acts as a unit for tensor product. We can write this as,

L®l=1®L=L.

So the set of all (equivalence classes of) representatiof4.6f.) for some particular

n, is very nearly a ring with and® as the ring operations. The problem is that the
representations do not form an abelian group urglbecause there aren’t any inverses
to representations under.

5 Characters

The character of a representation is essentially the trace of the matrices. To be precise
the character is a map from the group to the complex numbers which depends on the
representationy, : GL(n) — C. The map is given by,

X. (9) = Tr(L(g))-

Now anyg € GL(n) can be put into Jordan normal form by a suitable similarity
transformatiorhgh~'. The trace of a matrix in Jordan normal form is simply the sum
of its eigenvalues. The trace has the property Thétl B) = Tr(BA) so that,

Tr(hgh™') = Tr(h™thg) = Tr(g).

So the character of the standard representation simply mapgdadhe sum of its
eigenvaluest, + to + - - - + t,,) say.

In fact we can see that for any representation the character only depends on the
eigenvalues of,

Tr (L(hgh™") = Tr (L(h)L(g)L(h)~"') = Tr (L(h)"'L(h)L(g)) = Tr (L(g)).

From now on we will only deal with polynomial representations, these are repre-
sentation where the matrix entries are polynomial functions of the matrix entries of
the originalg. In fact all the representations we have seen so far, except one, are
polynomial representation. The exception is the dual representation, this is a rational
representation, its matrix entries are the ratios of polynomial functions in the original
matrix entries. However, it is easy to see that if we take the tensor product of the dual
rep. with the determinant repA, we get the antic symmetric power representation
/\”_1. In fact we can turn any rational representation into a polynomial representation
by tensoring with some power of the determinant rep.

Clearly, the character of a polynomial representation will be a polynomial itz . . . , ¢,,
the eigenvalues of. Moreover, since the permutation matrices are a discrete sub-
group of GL(n), the character will be a symmetric polynomial in the eigenvalugs of



For example the characters of the antisymmetric powers are the elementary symmetric
polynomials:

XV1 = tittat+---+1in

XVq = Z tﬂfj
1<i<j<n

v, = > titjte
1<i<j<k<n

XVn = tila -ty

Here the standard rep. has been writfehand the determinant rep\".
The character behaves nicely with respect to our operations on representations. It
is easy to see that,

Xeen (9) = X2 (9) + Xar (9),
for any representations and M. And it is not much harder to see that,

Xran (9) = X1 (9)Xa (9)-

It is well known that the elementary symmetric polynomial generate the ring of
all symmetric polynomials. So the relations above almost give a ring isomorphism
between the representations®f (n) and the symmetric polynomials i variables.
“Almost” because the representations do not form a ring, there are no inverses for the
direct sum operation. We can remedy this using the “Grothendick trick”, by taking
pairs of representatioff., M) and quotienting by the relation,

(L1> L2) ~ (Mla MZ) & L1 ®My,=Lo® M

(This trick can be used to produce integers from natural numbers or produce the ratio-
nals from the integers.)

The identity element with respect to the direct sum is the equivalence class of pairs
of the form[(L, L)]. The inverse of an elemef(tL, M)] is the elemenf(M, L)].

The equivalence classes of these pairs now form a ring called the representation
ring of the group and it is possible to show that this ring is isomorphic to the ring of
symmetric polynomials.

The standard theory of representationgdf(n) would now look at how to charac-
terise irreducible representations and then how tensor products of these representations
decompose as the direct sum of irreducibles.

Rather than follow that path here we look briefly at another important application.

6 Classical Invariant Theory

A classical invariant would be called a relative invariant in modern language. Such an
invariant is just a one dimensional representation, a power of the determinant rep. An
absolute invariant would be a copy of the trivial representation.



Recall from above that Syh&'L(3)* represents the coefficients of a conic curve in
two dimensional projective space. Now the elements of the representatidi8$yﬁGL(3)*
will be degreet polynomials in the coefficients. In general this representation will split
into a number of irreducible representations,

SymSynPGL(3)* =L M @ ---® N.

If any of these sub-representations is isomorphid®ahen it corresponds to a degree
k polynomial in the coefficients of the conic which after a general linear substitution
is simply multiplied by some power of the determinant. The power of the determinant
is called the weight of the (relative) invariant. An invariant of weight 0 would be an
absolute invariant.

For example, the discriminant of the curve,

a b ¢
det | b d e
c e f

is clearly an invariant polynomial with degree 3 and weigt2t The invariants have
geometric significance, the discriminant above vanishes precisely when the conic de-
generates into a pair of lines.

If we could work out the character of SYi8yn?G'L(3)* the invariant would ap-
pears as factors of the forthti 5.

In fact known that all invariants of Sy?GL(n)* generated by the discriminant.
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