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Abstract

The Riemann Hypothesis is one of the most profound and chal-
lenging unsolved problems in mathematics, originating from Bernhard
Riemann's 1859 conjecture on prime number distribution. Central to
number theory, this hypothesis has implications for prime distribution,
quantum physics, and cryptography. It is closely tied to the zeros of
the zeta function in the complex plane.
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1 Introduction

In 2000, the Clay Mathematics Institute established the Millennium Prize Prob-
lems, listing seven most challenging and profound unsolved mathematical problems.
Among these is the Riemann Hypothesis, stemming from German mathematician
Bernhard Riemann's 1859 conjecture on the distribution of prime numbers, which
remains unsolved. This hypothesis remains central to number theory, with implica-
tions for prime number distribution and cryptography. The Riemann Hypothesis is
comparable in the most renowned mathematical challenges, drawing global interest
following the resolution of Fermat's Last Theorem by Andrew Wiles and Richard
Taylor in the mid-1990s, though Fermat's theorem itself is not a Millennium Prob-
lem.
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2 The Prime Number Theorem

Let P be the set of prime numbers, and for any x ∈ R, we de�ne π(x) the prime-
counting function that gives the number of primes less than or equal to a real
number x, by:

π(x) =
∑

p∈P|p≤x

1 (1)

the number of prime numbers less than or equal to x.

After series of numerical experiments, Carl Gauss conjectured in 1792 or 1793,
at age 15 or 16, that when x tends to +∞ the function π(x) is asymptotically
equivalent to x

ln(x) . Later in 1896 that conjecture has been independently proven
by J. Hadamard and C.J de la Vallée-Poussin and since it has been known as the
Prime Number Theorem.

Theorem 1 (The prime number theorem). We have: π(x) ∼ x
ln(x) when x → +∞

.

3 Riemann Zeta function

Mathematicians have studied the Riemann zeta function for centuries due to its
profound outputs and its intricate encoding of prime number distribution. This
function not only yields complex mathematical insights but also has signi�cant
applications in physics, including quantum mechanics and statistical mechanics,
highlighting its interdisciplinary importance.

The Riemann zeta function is de�ned as the sum of the reciprocal of the natural
numbers raised to an exponent s.

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ ... (2)

Through analytical continuation, mathematicians have extended the domain of
the zeta function to all complex values of s, allowing for an in-depth exploration of
its properties. This method e�ectively broadens the function's original scope. In
1650, the mathematician Pietro Mengoli posed the foundational question of �nd-
ing the exact value of ζ(s) at s = 2, which later became crucial for understanding
the series convergence in the study of the zeta function.
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If s = 2 the series

ζ(2) = 1 +
1

22
+

1

32
+

1

42
+

1

52
+ ... (3)

converges, in other words, the exact sum of the reciprocal of the squares of all

natural numbers, known as Basel's problem, has a �nite value.

Let us consider the sequence of partial sums, where Sn represents the sum of
the �rst n terms of the series ζ(2)

Sn = 1 +
1

22
+

1

32
+

1

42
+ ...+

1

n2
(4)

Or, equivalently,

Sn =
n∑

k=1

1

k2
(5)

Consequently, we have

lim
n→+∞

Sn = lim
n→+∞

n∑
k=1

1

k2
= ζ(2) (6)

For each integer n, it corresponds a value Sn, as n increases, Sn tends to a
certain number. That number, to which Sn converges when n tends to in�nity, is
called the limit ζ(2), which is �nite.

However, if s = 1 the series diverges to +∞, indicating that the sum does not
converge to a �nite value when s = 1. Thus the series

ζ(1) = 1 +
1

2
+

1

3
+

1

4
+

1

5
+ ... (7)

diverges to in�nity.

Proposition 1. The sequence ζ(1) diverges towards in�nity.

limn→+∞
∑n

k=1

1

k
= +∞
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Proof. (By contradiction). Let us assume that limit when tends to in�nity has a
�nite value S.∑n

k=1

1

k
= S ⇔ S = 1 +

1

2
+

1

3
+

1

4
+

1

5
+ ...

If we multiply S by
1

2
, we obtain:

1

2
S =

1

2
+

1

4
+

1

6
+

1

8
+

1

10
+ ...

If we subtract
1

2
S from S, we get:

1

2
S = 1 +

1

3
+

1

5
+

1

7
+

1

9
+ ...

The di�erence of two expressions is

0 =
1

2
+

1

12
+

1

30
+

1

56
+ ... > 0.

Contradiction. The limit S cannot be �nite. □

In 1736, Leonhard Euler solved the Basel problem, earning him immediate
fame and recognition within the mathematics community. This achievement was
not Euler's only signi�cant contribution through his study of the zeta function. In
addition to solving the Basel problem, he also managed to express the zeta function
as an in�nite product, revealing deep connections to prime numbers.

ζ(s) =
∏

p prime

(
1−

1

ps

)−1

(8)

The Riemann zeta function can be expressed as a product, known as the Euler
product formula, discovered in 1737. It shows the �rst relationship between the
zeta function and prime numbers. Modern study of prime numbers has always
been based on the zeta function.

+∞∑
n=1

1

ns
=

∏
p prime

(
1−

1

ps

)−1

(9)

Euler's product formula presents an alternative expression of the zeta function
while revealing its profound link with prime numbers. Notably, this formula aids in
calculating the probability that two randomly chosen integers are relatively prime,
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thereby bridging essential concepts in number theory.

Let a and b be two randomly chosen positive integers. What is the probability
that they are relatively prime (having no common factors other than 1)? Otherwise
Prob(gcd(a, b) = 1).

What is the probability that a and b are not divisible by 2? That probability

would be

(
1−

1

22

)
.

What is the probability that a and b are not divisible by 3? That probability would

be

(
1−

1

32

)
.

What is the probability that a and b are not divisible by 2 or 3? That probability

would be

(
1−

1

22

)(
1−

1

32

)
.

One can follow the same pattern with being not divisible by 3, 5, 7 and so on.

Extending the process inde�nitely yields an in�nite product of

(
1−

1

p2

)
, where

p represents all prime numbers from 2 to in�nity, thus capturing the fundamental
role of primes in the function structure.

Prob(gcd(a, b) = 1) =
∏

p prime

(
1−

1

p2

)
=

∏
p prime

 1

1−
1

p2


−1

=
1

ζ(2)
(10)

In his famous paper in 1859 Figure 1, Riemann explained that the variable s is
not restricted to natural numbers; it can extend to all real numbers. Furthermore,
s can also take complex values, broadening the function domain signi�cantly. Rie-
mann demonstrated the close connection between the distribution of prime numbers
and the zeros of ζ(s) in the complex plane.

Hence, the link between the analytical properties of the function ζ and the dis-
tribution of prime numbers is de�ned through its expression as a Eulerian product.

ζ(s) =
∏

p prime

(
1−

1

ps

)−1

if ℜ(s) > 1 (11)
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The Riemann zeta function is an important function in analytic number theory
and the study of prime numbers. The Riemann hypothesis examines zeros outside
the region of convergence of the series.

The proof of the Prime Number Theorem is based on the properties of the Rie-
mann zeta function for complex values of the argument s. Recall that this function
is de�ned on the half-plane ℜ(s) > 1 by the following formula:

ζ(s) =

+∞∑
n=1

1

ns
(12)

A key point in the proof by Hadamard and Vallée-Poussin is that the zeta
function ζ(s) admits a meromorphic extension in a neighbourhood of the closed
half-plane ℜ(s) ≥ 1, with a single pole at s = 1 and no zeros along line ℜ(s) = 1.
Riemann had previously established in his 1859-paper the existence of a meromor-
phic extension of the function ζ(s) over the entire complex plane C where he also
highlighted the close connection between prime number distribution and the zeros
of ζ(s) in the complex domain.

By that time, the study of prime number distribution had already inspired sig-
ni�cant work, both rigorous and conjectural, that did not rely on complex analysis
methods. In 1737, Euler used the function ζ, as a function of a real variable, to in-
vestigate the sequence of prime numbers. The prime number theorem's equivalent
for π(x) had been conjectured in the late 18th Century by Gauss and Legendre.
Moreover, shortly before Riemann's 1859-paper, Chebyshev had established, us-
ing elementary methods, the existence of two positive constants A and B with
0 < A < 1 < B, such that for su�ciently large numbers x, we have the following
double inequality.

A.
x

ln(x)
≤ π(x) ≤ B.

x

ln(x)
(13)

In fact, Chebyshev proved that

A =
ln(2)

2
+

ln(3)

3
+

ln(5)

5
− ln(30)

30
≈ 0.92129

And B =
6A

5
≈ 1.10555
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Over years these bounds have been improved, for example Sylvester in 1892
showed that:

0.956
x

ln(x)
≤ π(x) ≤ 1.045

x

ln(x)
(14)

However, a complete proof of the Prime Number Theorem was only achieved at
the late 19th Century, after advancements made in complex function theory, which
provided the necessary tools to rigorously establish the theorem.

Riemann demonstrated how to extend the zeta function to all possible values in
C, except 1. So, there is only one value where the function is not de�ned, that case
is called a pole or a singularity corresponding to s = 1, where the zeta function
cannot be extended.

Thus, Riemann's hypothesis concerns the zeros of the zeta function, speci�cally
the values of the variable s for which ζ(s) = 0. For all negative even integers, the
zeta function ζ(s) equals 0; these values are known as the trivial zeros of the zeta
function. The question then arises: does the function ζ(s) have other zeros?

Observations indicate that all additional non-trivial zeros appear to lie within
a speci�c region called the critical strip. This strip is bounded by two vertical
lines, namely the imaginary axis and the line x = 1, containing all complex numbers
where the real part lies between 0 and 1. More precisely, the middle line represented
by x = 1

2 , contains these zeros. Huge number of zeros have been found on this line,
like trillions of numbers.

In fact, the Riemann Hypothesis asserts that all non-trivial zeros of the zeta
function lie exactly on this line Figure 2.

4 Conclusion

The prime counting function π(x) introduced by Gauss in the 18th Century esti-
mates the number of primes less than a given value x. Gauss proposed that π(x)
could be approximated by x

ln(x) . This result is later formalised as the prime number
theorem. In his 1859 paper, Riemann advanced this study by introducing the zeta
function, thereby linking it intrinsically to prime distribution. He further extended
the zeta function's domain from real numbers to the whole complex plane.

The Riemann zeta function has two types of zeros: trivial zeros at all negative
even integers, and non-trivial zeros whose distribution remains central to number
theory. The Riemann Hypothesis posits that all non-trivial zeros lie on the line
with real part x = 1

2 . Until today, the Riemann hypothesis remains unproven and
deeply in�uential in the �eld of mathematics and number theory.
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Figure 1: Riemann paper.
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Figure 2: Critical strip.
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