
About the distribution of the prime 
numbers: 

elementary approaches. 
 

Introduction: 
The prime numbers are those integers that can only be divided by themselves and 1. 

While prime numbers seem to be distributed irregularly along the number line, they 

exhibit fascinating patterns and properties upon closer study. The Prime Number 

Theorem offers a mathematical description of this distribution, indicating that primes 

become less frequent as numbers grow larger, yet they follow a predictable pattern, 

revealing a deeper order within their seemingly random arrangement. 

The prime number theorem tells us something about how the prime numbers are 

distributed among the other integers.  

 

Definition 1: A positive integer number is called a prime number if it is greater than 1 

and can only be divided by itself and 1. The integer numbers greater than 1 that are 

not prime are called composite numbers which can be written as a product of prime 

numbers in a unique way, for example           

 

Definition 2: We define      the prime-counting function that gives the number of 

primes less than or equal to a real number  ,   

       
   

 

The Prime Number Theorem. 

 

Theorem 1: (Euclid, 300 BC). The sequence of the prime numbers         

                    is infinite and for any integer    , we have this 

inequality: 

        
 

No matter how far you go along the number line, you will always find more primes. 

Proof: By induction         
 and         satisfy the inequality.  



Assuming for any integer    , and for any            we have         
.  

The integer number                   is not divisible by any prime number 

                .  

Therefore                                 
              

 

This theorem shows that the sequence of the prime numbers is infinite, and      has 

a lower bound. □ 

 

Corollary 2: For any number    , we have:  

                . 

Proof: From Euclid’s theorem, we have         
   . 

Let    , consider the number integer   defined by      
    

   

   
 

   
 , we take the 

integer part of the fraction.  

The integer   satisfies the following double inequality:       
      

. 

 As the function        is increasing, we deduce the following:       

       
     

    
   

   
 

   
.    

Now, we need to show that for any number    , we have   
    

   

   
 

   
           .   

This inequality is clearly equivalent to                                . 

 

However, the function                      is increasing, then for any    , we 

have  

                                      . 

As               this implies                                 □ 

 

The approximation provided by Euclid’s Theorem has highly been improved by C. 

Gauss conjecture 1792.  

     
 

     
,       

In using complex analysis methods, notably by examining the analytical properties of 

the Riemann zeta function  , (in particular       , for any          ). In 1896 

that conjecture has been independently proven by J. Hadamard and C.J de la Vallee 

Poussin and since it has been known as the Prime Number Theorem. 



Theorem 3: (The prime number theorem)  

We have:         
 

     
,      . 

 

The Prime Number Theorem describes the asymptotic distribution of prime 

numbers, stating that as   grows large, the number      of primes less than or equal 

to   approximates  
 

      
 .  

Consequently, the density of prime numbers around a large number   is 

approximately  
 

      
, indicating that that primes become less frequent as numbers 

increase.  

This distribution is intimately connected to the Riemann zeta function, a complex 

function central to number theory. The Riemann Hypothesis posits that all non-

trivial zeros of this function have a real part of 1/2. Proving this hypothesis would 

have profound implications for understanding the distribution of prime numbers, 

providing a precise description of their irregularities and regularities. 

 

Inequalities of Chebyshev type. 
Next, we are going to show that 

  
 

     
          

 

     
 

Where   and   are two constants. 

 

Theorem 4: For any     , we have: 

   

 
 

 

     
          

 

     
 

Notes these constants are not the best, the goal is to show how this elementary 

approximation can lead to interesting results. The proof of this theorem relies on four 

lemmas. 

Lemma 5: For any integer     , we have:   

  
          

  
    

 
     

 

Proof: Given  

 
    

 
  

                           

  
 

 

  
  

    

     
  



 

Let   be a prime number,            . From the above equality   is a factor 

of       
 

   . As   does not divides   , it must necessarily divide      
 

 . In other 

terms,      
 

  is multiple of every prime number  ,           , therefore 

multiple of their product. Consequently 

 

  
          

  
    

 
  

The second inequality, one notices that  

                  
    

 
   

    

 
   

    

   
 

    

   

   
    

 
  

 

                     
    

 
  

Which gives the inequality wanted. □ 

 

Lemma 6: For any integer     , we have:   

  
   

    

Proof: By induction, for      or   the inequality is obvious. 

Assuming the result remains true for a certain integer       and any   

              

If   is even, we have   

  
   

   
     

         

If   is odd,          from Lemma 5, we have   

  
          

  
    

 
     

  
   

    
     

    
          

       
     

  

According to the induction assumption we have 



  
     

      

Therefore  

  
      

          

 

Corollary 7: For any real number     , we have:   

  
   

    

Proof: Let      and      . By using Lemma 6, we have  

  
   

   
   

       

□ 

Lemma 8: For any integer     , we have:   

  

  
  

  

 
     

Proof: For the first inequality, it suffices to notice that: 

 
  

 
                 

For the second inequality, we set  

        
    

 
 

    

   

 

Notice that pour tout                

 
    

 
   

    

   
  

Then 

         
    

   
  

Given  

  

  
 

     

 
   

    

   
   

    

   
   

    

 
   

  

 
  

□ 



Lemma 9: Assuming that      divide     
 
 , for a certain prime number   a certain 

integer number      Then  

       

Proof: From the Legendre’s Formula  

         
 

  
 

  

   

 

We have  

    
  

 
                        

  

  
    

 

  
  

  

   

 

Note if     
       

      
  then 

 
  

  
    

 

  
  

Moreover, the function                 is 1-periodic and we have: 

      
          

 

 

      
 

 
    

  

Therefore  

      
  

 
      

  

  
    

 

  
  

 
       
      

 

   

  
       

      
  

       

      
 

This implies  
        

 

Now, let us prove Theorem 4 

First let us show that  

     
  

     
 

Note  

  
   

   

      

     
          

 

Using Lemma 6, we obtain  



 
 
 
                

Thus  

           
       

     
 

  

     
 

Because          . 

Since, for    , we have:   

         
 

     
 

Finally, we obtain  

     
  

     
 

Note, the function   
 

      
 is increasing over interval       , so we deduce for any 

   , 

            
    

     
 

  

     
 

Now let us show that  

     
      

 
 

 

     
 

 

In one hand, Lemma 9 implies that  

 
  

 
      

   
  

    

     
    

          

 

 

The other hand, according to Lemma 8, we have  

   

  
  

  

 
  

Therefore  

   

  
           

Apply logarithm to both sides of the above inequality, we obtain, for    : 

       

      
          



We easily verify  

      

      
 

       

      
          

Thus 

       
      

      
 

To conclude, note that the inequality  

     
      

      
 

Is true for      . For    , we set    
 

 
 , we have then 

            

This implies that 

           
      

      
 

      

      
 

      
 

 
    

     

     
 

      
 

 
 

 

 
  

     

     
 

      
 

 
 

 

 
  

      

     
 

      
 

 
 

 

 
       

 

     
 

Since    , we deduce  

      
 

 
 

 

 
       

 

     
 

     

 
 

 

     
 

     
 

     
 
     

 
 

□. 

Chebyshev functions. 

Apart from     , two other sums appear in the study of the distribution of prime 

numbers. There are two Chebyshev functions. 

         
   

 



And  

         
    

 

In this section we will show how the three functions are closely related together. Let 

us give a first elementary estimate arising from Corollary 7. 

 

Lemma 10: We have  

             

Proof: Let apply the exponential function  

         
   

   

Thus 

                    

□. 

The following result shows the link between the two functions      and     . 

 

Lemma 11: For    , we have:   

                         

Proof: Let   be the greatest integer such that   
 

  , equivalently    
     

     
 . We 

have then 

          

      

 

   

     
 
   

In particular,  

               
 
  

 

   

       

However, by using Lemma 10, we obtain   

                   
 
 

 

   

                 

As   
     

     
 we deduce that  

                     



□ 

Below, we present the link between the two functions      and     . 

Lemma 12: For    , we have:   

    

     
      

    

              
 

 

        
 

Proof: The first inequality occurs from the following estimation  

         
   

         
   

             

For the second inequality, we note that for      , we have  

            
     

 
 

     
      

     

 

          
 

     
             

This implies  

     
    

     
       

    

     
   

If we substitute   
 

       
, we deduce that  

     
    

               
 

 

       
  

□. 

Theorem 12: The following assertions are equivalent. 

i.      
 

     
,   when      

ii.       ,   when      

iii.       ,   when      

 

By using Lemma 11 and Lemma 12, we have  

    

 
 

    

 
 

    

 
 

      

  
 

And  

    

 
 

         

 
 

    

 
 

     

                
 

 

     
 

Thus, the result has been proved. □  



 


