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That busy bloke Euler observed that astonishingly:∏
k≥1

(1− xk) = 1− x − x2 + x5 + x7 − x12 − x15 + x22 + x26 . . .

Those familiar with them will have identified the exponents as the first few
Generalised Pentagonal numbers which have the form:

fn =
3n2 + n

2

for n = 0,±1,±2, . . .
If this is really true, how do we prove it?
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Stepping back, another of Euler’s investigations concerned the infinite
product:∏

k≥1

(1 + xk) = 1 + x + x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + . . .

In this product is it is easy to identify the coefficient of xn as the number
d(n) of partitions of n into distinct parts. So for instance 4 has only 2
such partitions: 4 itself, and 1, 3 whereas 5 has the 3 distinct partitions: 5
1, 4,3, 2. But does this help us? No, but what about partitions where the
parts are not distinct?
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The corresponding formal product for partitions into non-distinct parts is:

(1+x+x2+x3+ . . .)(1+x2+x4+x6+ . . .) . . . (1+xk+x2k+x3k+ . . .) . . .

It is easy to see that if everything was multiplied out, the coefficient of xn

would count one for each partition of n, this time allowing repeats. The
first bracket above provides one of each summand, the second two, etc
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But obviously each bracket in the above product is a geometric series, and
so it can be written as:

(1− x)−1(1− x2)−1 . . . (1− xk)−1 . . . =
∏
k≥1

(1− xk)−1

So denoting by pn the number of partitions of n for n ≥ 0 allowing
repeats, we can write the expansion of the above as:∏

k≥1

(1− xk)−1 =
∑
n≥0

cnx
n
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But this is the exact inverse of the product we are trying to evaluate! i.e.∏
k≥1

(1− xk)
∏
k≥1

(1− xk)−1 = 1

To recap, if we write the expansion of
∏

k≥1(1− xk) as∏
k≥1

(1− xk) =
∑
n≥0

cnx
n

then we suspect that if n is of the form

n =
3j2 + j

2
; j = 0,±1,±2, . . .

then cn = 1 if j is even, and cn = −1 if j is odd.
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So multiplying out the above identity:

(1 + c1x + c2x
2 + . . . cpx

p . . .)(1 + p1x + p2x
2 + . . . pqx

q + . . .) = 1

we get, obviously: ∑
0≤k≤n

ckp(n − k) = 0

Remember that we know what the pn are, and also that c0 = 1, so in fact
this equation (recurrence relation) determines the ck , we just need to
know what it is. So, given that we know what we think it is, we can turn
this round and ask instead if the conjectured values satisfy this relation.
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So using the symbol fj =
3j2+j

2 , j = 0,±1,±2, . . ., and substituting the
conjecture values into the relation, we get, for all n ≥ 0:∑

j even fj≤n

p(n − fj) =
∑

j odd fj≤n

p(n − fj)

So, this is maybe a scary relation, but all we need to ask to prove the
conjecture is, is this relation true? To re-frame this, is we denote the set
of all partitions of n by P(n), then we want to establish a 1− 1 relation:

ϕ :
⋃

j even fj≤n

P(n − fj) 7→
⋃

j odd fj≤n

P(n − fj)

The following bijection was devised by David Bressoud and Doron
Zeilburger.
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Firstly notice that

fj+1 − fj =
3(j + 1)2 + j + 1

2
− 3j2 + j

2
= 3j + 2

and fj−1 − fj = −(3j − 1) So if a partition of n − fj is

n − fj = λ1 + λ2 + . . .+ λt ; λ1 ≥ λ2 ≥ . . . ≥ λt ≥ 1

then this is mapped by ϕ to:

(t + 3j − 1) + (λ1 − 1) + (λ2 − 1) + . . .+ (λt − 1) if t + 3j ≥ λ1

(λ2 + 1) + λ3 + 1) + . . .+ (λt + 1) + 1 + 1 + . . .+ 1 otherwise

where there are λ1 − t − 3j − 1 ones in the second case.
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The total of the first mapping is n − fj + 3j − 1 = n − fj−1, and so it is a
partition of n − fj−1. The second mapping totals to
n − fj − 3j − 2 = n − fj+1.
Thus the mapping maps

ϕ :
⋃

j even fj≤n

P(n − fj) ↔
⋃

j odd fj≤n

P(n − fj)

In fact ϕ is an involution, i.e ϕ2 is the identity, so is therefore a bijection.
This is easily checked, but as an example,if we choose the partition
4 + 3 + 2 + 1 and j = −2, then t = 4, fj = 5 and n = 15. So
t + 3j = −2 < λ1 = 4. So the second case applies, and the partition is
mapped by ϕ to: 4 + 3 + 2 + 1 + 1 + 1 + 1 + 1 with j = −1.
Applying ϕ again, since we now have t = 8 and λ1 = 4, we have
t + 3j = 5 > λ, so now the first case applies, and ϕ maps the partition to:
4 + 3 + 2 + 1 + 0 + 0 + 0 + 0 + 0 + 0. Since we discard the zeroes, we are
back where we started.
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