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1 Introduction

Work prompted by problem introduced by Tony, involved determinant of the
form,

det


a0 a1 · · · an
a1 a2 · · · an+1

...
... . .

. ...
an an+1 · · · a2n

 .

After searching on Wikipedia this turns out to be an invariant discovered
by Sylvester in 1852, [1]. The paper that introduces this determinant does a lot
more, producing a sequence of invariant for binary forms of even degree. Here,
just want to look at one result, mentioned in the Wikipedia article.

One problem with reading old papers is that terminology has changed over
the years. So for example, a binary form of degree n is homogeneous polynomial
in two variables with degree n. A general binary form would be written as,

f(x, y) = a0x
n+na1x

n−1y+
n(n− 1)

2
a2x

n−2y2+· · ·+anyn =

n∑
i=0

ai

(
n

i

)
xn−iyi.

The coefficients ai are arbitrary constants as usual. The inclusion of the bino-
mial coefficients here was standard in the 19th century but has fallen out of use
now. Here it is essential for the simplicity of the result. Finally here note that
the ground field will be taken to be the complex numbers C, again this is not
usually specified in older work but is implicit since the fundamental theorem of
algebra, that the complex numbers are complete, will be used.

2 The Theorem

A binary form of degree 2n can be split into a sum of powers of n linear forms
if and only if its Catalecticant is zero.

Consider a binary form of even degree,

f(x, y) =

2n∑
i=0

ai

(
2n

i

)
x2n−iyi,
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the theorem give a condition for this to be equal to an expression of the form,

φ(x, y) =

n∑
j=1

(pjx+ qjy)2n.

Notice that for a form of odd degree, 2n+ 1, there will be 2n+ 2 constants
a0, . . . , a2n+1. Hence when we equate this to a sum of powers of n + 1 linear
factors, there will be the same number of constants to be determined. So we
might expect that an odd degree binary form can always be decomposed into
a sum of powers of n + 1 linear factors. And this is indeed the case as shown
by Sylvester in an earlier paper. In the even case considered here there is one
fewer constant to be determined than there are coefficients in the binary form.
So in this case we would expect there to be a single condition on the coefficients
which ensures the decomposition can be performed.

As an example consider the binary quartic,

fe(x, y) = 2x4 + 12x3y + 30x2y2 + 36xy3 + 17y4.

This can be written as

fe(x, y) = 2

(
4

0

)
x4 + 3

(
4

1

)
x3y + 5

(
4

2

)
x2y2 + 9

(
4

3

)
xy3 + 17

(
4

4

)
y4,

that is a0 = 2, a1 = 3, a2 = 5, a3 = 9 and a4 = 17. The catalecticant is thus,

det

 a0 a1 a2
a1 a2 a3
a2 a3 a4

 = det

 2 3 5
3 5 9
5 9 17

 = 0.

Hence by the theorem, the fom can be written as the sum of two quartic of
linear factors,

fe(x, y) = (x+ y)4 + (x+ 2y)4.

(Of course the computations here were performed in the reverse order to the
presentation above.)

3 Proof

Before expanding the sum of powers above let qj = λjpj for j = 1, . . . , n. So
now we can write,

φ(x, y) =

n∑
j=1

p2nj (x+ λjy)2n.

Expanding the powers of the linear factors gives,

φ(x, y) =

2n∑
i=0

 n∑
j=1

p2nj λij

(2n

i

)
x2n−iyi.
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Comparing the coefficients between the above expansion and the definition
of the form f(x, y) gives 2n+ 1 equations,

p2n1 + p2n2 + · · · + p2nn = a0,
p2n1 λ1 + p2n2 λ2 + · · · + p2nn λn = a1,
p2n1 λ21 + p2n2 λ22 + · · · + p2nn λ2n = a2.

...
p2n1 λ2n1 + p2n2 λ2n2 + · · · + p2nn λ2nn = a2n.

Notice the cancellation of the binomial coefficients. The equations can be writ-
ten in the matrix-vector form,

1 1 · · · 1
λ1 λ2 · · · λn
λ21 λ22 · · · λ2n
...

...
. . .

...
λ2n1 λ2n2 · · · λ2nn



p2n1
p2n2
...
p2nn

 =


a0
a1
a2
...
a2n

 . (1)

Now Take the first n+ 1 rows of this system,
1 1 · · · 1
λ1 λ2 · · · λn
...

...
. . .

...
λn1 λn2 · · · λnn



p2n1
p2n2
...
p2nn

 =


a0
a1
...
an

 . (2)

The matrix on the left-hand side of this equation has order (n + 1) × n, hence
there will be an (n+ 1)-vector, (Λ0, Λ1, . . . ,Λn), which annihilates it:

(Λ0, Λ1, . . . ,Λn)


1 1 · · · 1
λ1 λ2 · · · λn
...

...
. . .

...
λn1 λn2 · · · λnn

 = 0.

In particular the elements Λi can be identified with the cofactors of the matrix,

Λ0 = det


λ1 λ2 · · · λn
λ21 λ22 · · · λ2n
...

...
. . .

...
λn1 λn2 · · · λnn

 , Λ1 = −det


1 1 · · · 1
λ21 λ22 · · · λ2n
...

...
. . .

...
λn1 λn2 · · · λnn

 , . . .

up to,

Λn = (−1)n det


1 1 · · · 1
λ1 λ2 · · · λn
...

...
. . .

...
λn−1
1 λn−1

2 · · · λn−1
n

 .
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The last determinant here is the Vandermonde determinant and in fact the oth-
ers are multiples of the Vandermonde determinant by a symmetric polynomial
in the λi’s. However, for our purposes, this is not important.

Multiplying equation (2) by the vector of cofactors gives a linear equation,

a0Λ0 + a1Λ1 + a2Λ2 + · · ·+ anΛn = 0.

Next we take another n + 1 row from equation (1), this time starting from
the second row,

λ1 λ2 · · · λn
λ21 λ22 · · · λ2n
...

...
. . .

...
λn+1
1 λn+1

2 · · · λn+1
n



p2n1
p2n2
...
p2nn

 =


a1
a2
...

an+1

 .

Notice that for any λi we have that,

Λ0λi + Λ1λ
2
i + · · ·+ Λnλ

n+1
i = λi(Λ0 + Λ1λi + · · ·+ Λnλ

n
i ) = 0,

and hence we get another linear homogeneous equation,

a1Λ0 + a2Λ1 + a3Λ2 + · · ·+ an+1Λn = 0.

Clearly we can repeat this procedure until we get n+ 1 equations,

a0Λ0 + a1Λ1 + a2Λ2 + · · · + anΛn = 0,
a1Λ0 + a2Λ1 + a3Λ2 + · · · + an+1Λn = 0,

...
anΛ0 + an+1Λ1 + an+2Λ2 + · · · + a2nΛn = 0.

In matrix-vector form this is,
a0 a1 · · · an
a1 a2 · · · an+1

...
... . .

. ...
an an+1 · · · a2n




Λ0

Λ1
...

Λn

 =


0
0
...
0

 . (3)

Now clearly the vanishing of the catalecticant,

det


a0 a1 · · · an
a1 a2 · · · an+1

...
... . .

. ...
an an+1 · · · a2n

 = 0,

gives a necessary condition for the decomposition to be possible, otherwise only
trivial solution for the Λi’s would be possible.

To show that this condition is also sufficient note that if it holds, then
equation (3) has nontrivial solution. With the solutions for the Λi’s we can find
the λi’s as the n solutions to the polynomial equation,

Λ0 + Λ1λ+ · · ·+ Λnλ
n = 0.

Finally the p2ni ’s and hence the pi’s, can be found by linear algebra, that is from
equation (1).
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4 An Application

I found this problem in an old textbook, [2]. Show that the secant variety to
the rational normal quartic curve is a cubic hypersurface. A hypersurface is an
algebraic variety with one fewer dimensions than the projective space it lies in;
a primal in older language.

The rational normal quartic curve can be thought of as a mapping from the
projective line P1 to P4. In particular, if the line has homogeneous coordinates
(s : t) then the mapping is given by,

(s : t) −→ (s4 : s3t : s2t2 : st3 : t4).

This can be seen as a parameterisation of the curve, with homogeneous param-
eters s and t. It is an example of a Veronese embedding, a general way to map
one projective space into another of higher dimension.

If the P4 has homogeneous coordinates (x0 : x1 : x2 : x3 : x4) then then the
curve is given by the intersection of six quadric (degree 2) hypersurfaces. These
can be expressed as,

Rank

(
x0 x1 x2 x3
x1 x2 x3 x4

)
= 1.

That is the quadrics are given by the six degree 2 equations,

x0x2 − x21 = 0,
x0x3 − x1x2 = 0,
x0x4 − x1x3 = 0,
x1x3 − x22 = 0,

x1x4 − x2x3 = 0,
x2x4 − x23 = 0.

Now we can think of point in P4 as quartic binary forms, given a form:

a0y
4 + 4a1y

3x+ 6a2y
2x2 + 4a3yx

3 + a4x
4,

we will associate the point,

(a0 : a1 : a2 : a3 : a4) ∈ P4.

Note that multiplying the form by an overall non-zero constant doesn’t change
it, so these are points in a projective space.

Under this mapping forms which can be decomposed as the fourth power of
a linear factor describe a rational normal quartic curve. To see this consider the
fourth power of an arbitrary linear factor,

(px+ qy)4 = q4y4 + 4pq3xy3 + 6p2q2x2y2 + 4p3qx3y + p4x4,

where p and q are arbitrary. Such forms will be mapped to the points, (q4 :
pq3 : p2q2 : p3q : p4) in P4. That is they lie on a rational normal quartic curve.
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A secant line to a curve is a line which meets the curve in two points.
The closure of the set of these lines will also include tangent lines to the curve,
where the two points, where the line meets the curve, coalesce. The set of points
on all possible secant lines to an algebraic curve will form a three dimensional
variety; two dimensions given by varying the points along the curve and another
dimension as the point can move along the line. This means that for our quartic
curve, its secant variety will be a hypersurface in P4 and hence it will be given
by a single equation. Since the points on the curve correspond to forms which
are decomposeable into single quartic factors, a point on a secant line to the
curve will correspond to a linear combination of such quartics. So the condition
for a quartic binary for to be decomposeable into the fourth powers of a pair of
linear factor will be the same as the condition for the point in P4 to lie on the
secant variety to the rational normal quartic curve. That is,

det

 a0 a1 a2
a1 a2 a3
a2 a3 a4

 = 0,

clearly a homogenous cubic in the coordinates of P4.
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