The Wallace-Simson theorem

Tony Forbes

Let
$A=(\cos a, \sin a), \quad B=(\cos b, \sin b), \quad C=(\cos c, \sin c), \quad P=(1,0)$,
and suppose R is on $A B$ such that $P R$ is perpendicular to $A B, S$ is on $A C$ such that $P S$ is perpendicular to $A C, T$ is on $B C$ such that $P T$ is perpendicular to $B C$. The Wallace-Simson theorem says that R, S and T are collinear.

There are various clever ways of establishing this result using geometry or complex numbers or perhaps some other method; see Wikipedia, for example. Here I offer a proof that does not rely on human ingenuity: simply compute the coordinates of R, S and T by brute force.

Consider R. This point must satisfy three equalities,

$$
\begin{align*}
A+r(B-A) & =R, \\
(R-A) \cdot(R-P) & =0, \tag{1}\\
(R-B) \cdot(R-P) & =0
\end{align*}
$$

for some value of r. The first expresses the collinearity of A, B and R. The other two follow from the orthogonality relations $R A \perp R P$ and $R B \perp R P$.

The equations (1) are solved by the traditional method. We write down the solution,

$$
\begin{aligned}
R & =\left(\frac{1}{2}(\cos a+\cos b-\cos (a+b)+1), \frac{1}{2}(\sin a+\sin b-\sin (a+b))\right) \\
r & =\frac{\sin (a / 2) \cos (b / 2)}{\sin ((a-b) / 2)}
\end{aligned}
$$

and invite the reader to verify that it satisfies (1). For the other two points, we get similar formulæ:

$$
\begin{aligned}
& S=\left(\frac{1}{2}(\cos a+\cos c-\cos (a+c)+1), \frac{1}{2}(\sin a+\sin c-\sin (a+c))\right) \\
& T=\left(\frac{1}{2}(\cos b+\cos c-\cos (b+c)+1), \frac{1}{2}(\sin b+\sin c-\sin (b+c))\right)
\end{aligned}
$$

Finally, observe that if

$$
u=\sin (a / 2) \sin ((b-c) / 2), \quad \text { and } \quad v=\sin (b / 2) \sin ((a-c) / 2),
$$

then we have $u(T-R)=v(S-R)$; see Problem xxxxx. Hence R, S and T are collinear.

In the interests of symmetry we should regard $\mathcal{Q}=\{A, B, C, P\}$ as a set of four typical points on the circle. Then it makes good sense to construct the Wallace-Simson line for each triangle formed from three points of the cyclic quadrilateral \mathcal{Q} with respect to the 4 th point. In the diagram on the next page the four Wallace-Simson lines are shown in red and, as you can see, they meet at a common point, W. Moreover, for each side of \mathcal{Q}, one can construct a line that is perpendicular to this side and passes through the mid point of the opposite side (green in the diagram). These four lines also meet at $W,[$ R. F. Cyster, The Simson lines of a cyclic quadrilateral, Math. Gazette 25, (1941), 56-58, https://doi.org/10.2307/3606490.

Problem xxxxx - The Wallace-Simson line

Tony Forbes

Let

$$
R(a, b)=(\cos a+\cos b-\cos (a+b)+1, \sin a+\sin b-\sin (a+b))
$$

and

$$
u(a, b)=\sin (a / 2) \sin ((b-c) / 2)
$$

Show that

$$
u(a, b)(R(b, c)-R(a, b))=u(b, a)(R(a, c)-R(a, b))
$$

