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The perfect riffle shuffles 7.1

Tony Forbes
Bridge involves four players and a deck of cards. The details of the game
need not concern us except for some explanation we will need for later.

(i) The players, who always have names South, West, North and East,
sit at the four sides of a square table in that order going clockwise.

(ii) There is a sequence of deals. Each deal proceeds as follows.

(a) West shuffles the cards.
(b) East cuts the cards.
(c) South deals all 52 cards, one at a time, in order West, North,

East, South, West, North, East, South, . . . , South.
(d) Competitive activity takes place involving bidding and card play.
(e) The players change their names for the next deal: (West, North,

East, South) → (South, West, North, East).

(iii) Wealth is redistributed according to some agreed scheme.

We are interested in bridge games where each player gets 13 cards of the
same suit, a situation which we call a perfect deal.

To a mathematician the probability of a perfect deal is utterly and
incredibly small. I’m sure there are websites that derive the exact value, or
maybe one can work it out for oneself:

52 · 39 · 26 · 13 · (12!)4

52!
=

1

2235197406895366368301560000
. (1)

To a seasoned bridge player, however, the probability is considerably
greater, perhaps merely very small or even just small. For a possible ap-
proach to calculating it, suppose the following:

fraction of bridge deals where a new deck of cards is used = ν,
fraction of these where the shuffler does two riffle shuffles = ρ,
fraction of these where both riffle shuffles are perfect = α.

All new card decks I have seen come neatly partitioned into the four suits,
like so:

C = (♦A,♦2, . . . ,♦K,♣A,♣2, . . . ,♣K,♥A,♥2, . . . ,♥K,♠A,♠2, . . . ,♠K).

It turns out that two perfect riffle shuffles of C followed by a cut produces
a perfect deal, and so one can argue that

probability of a perfect deal at bridge > αρν.
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The cut is irrelevant except that it will determine who gets the spades—and
this is relevant for bridge players because the partnership with the spades
will successfully contract for 7♠ and take all 13 tricks, a grand slam, for a
score of at least 1360 = 7 · 30 + 1000 + 150.

I have no idea how to calculate the parameters ν, ρ and α except to
assert that if the shuffler is a card sharp worthy of that qualification, then
α can be nearly 1. This last observation has consequences. If we assume
there exist four bridge enthusiasts that include an expert riffle-shuffler, we
can reasonably assume α > 0.9. Also ρ ≥ 0.25 and, since a deck of cards
will surely be good for no more than 2000 deals, ν ≥ 0.0005. So the group
will enjoy a perfect deal with probability exceeding 0.0001, an enormous
number compared with (1). And to prove that these things actually do oc-
cur in real life see https://mathsjam.com/assets/talks/2011/RayHill-

MathsJam2011PerfectBridgeDeal.pdf.

Since we will usually be concerned with either numbers or suits but not
both at once, we redefine the new deck of cards C in two different ways:

N = (1, 2, . . . , 52),

S = (d, d, d, d, d, d, d, d, d, d, d, d, d, c, c, c, c, c, c, c, c, c, c, c, c, c,
h, h, h, h, h, h, h, h, h, h, h, h, h, s, s, s, s, s, s, s, s, s, s, s, s, s).

The number form N is appropriate for whenever we want to subject the
cards to arithmetic.

There are two perfect riffle shuffles, which I shall call R0 and R1.

R0: This is the most perfect of the perfect riffle shuffles. It moves all 52
cards and it has a nice definition when it acts on N:

x 7→ 2x mod 53,

meaning that the card at position x in the deck goes to position
2x mod 53. To determine which card occupies position y in the shuf-
fled deck, you have to look at the inverse,

y 7→ y

2
mod 53.

For example, 1 7→ 2 and (1/2 mod 53) = 27 7→ (54 mod 53) = 1. The
shuffle consists of a single cycle and therefore has order 52:

(1, 2, 4, 8, 16, 32, 11, 22, 44, 35, 17, 34, 15, 30, 7, 14, 28, 3, 6, 12,

24, 48, 43, 33, 13, 26, 52, 51, 49, 45, 37, 21, 42, 31, 9, 18, 36, 19, 38, 23,

46, 39, 25, 50, 47, 41, 29, 5, 10, 20, 40, 27).

https://mathsjam.com/assets/talks/2011/Ray Hill - MathsJam 2011 Perfect Bridge Deal.pdf
https://mathsjam.com/assets/talks/2011/Ray Hill - MathsJam 2011 Perfect Bridge Deal.pdf
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R1: This shuffle is not quite as perfect as R0 because it leaves cards 1 and
52 fixed. It is defined by

x 7→ (2(x− 1) mod 51) + 1, 1 ≤ x ≤ 51,

52 7→ 52,

its inverse is

y 7→
(
y − 1

2
mod 51

)
+ 1, 1 ≤ y ≤ 51,

52 7→ 52,

it has order 8, and its cycle representation (omitting fixed points) is

(18, 35)(2, 3, 5, 9, 17, 33, 14, 27)(4, 7, 13, 25, 49, 46, 40, 28)

(6, 11, 21, 41, 30, 8, 15, 29)(10, 19, 37, 22, 43, 34, 16, 31)

(12, 23, 45, 38, 24, 47, 42, 32)(20, 39, 26, 51, 50, 48, 44, 36).

More generally we can define Rk, k ∈ {0, 1, . . . , 26}. Keep the top k and the
bottom k cards fixed, renumber the 52− 2k middle cards 1, 2, . . . , 52− 2k,
and perfect riffle shuffle them by z 7→ 2z mod 53 − 2k. However, we shall
see later that not much is lost by ignoring R2, R3, . . . , R26.

We can confirm by straightforward computation that two perfect riffle
shuffles of either type (R0 or R1) applied to C and followed by a cut will
create a perfect deal. Writing k for Rk, we can express the four options
succinctly by

[00], [01], [10], [11], (2)

which have orders 26, 252, 252, 4, respectively. Assume the dealer is South,
the deck is arranged as in C and the number of cards cut off the top of the
deck is a multiple of 4. Then we can determine who gets the spades:

[00] : West, [01] : North, [10] : East, [11] : South.

If only a grand slam is important, then just one shuffle will deliver it. Al-
though not a perfect deal, one partnership gets all the spades and hearts
between them,

[0] : East–West, [1] : North–South,

and 7♠ is made. We can show in detail how R0 and R1 act on S:
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[] : dddddddddddddccccccccccccchhhhhhhhhhhhhsssssssssssss,

[0] : hdhdhdhdhdhdhdhdhdhdhdhdhdscscscscscscscscscscscscsc,

[1] : dhdhdhdhdhdhdhdhdhdhdhdhdhcscscscscscscscscscscscscs,

[00] : shcdshcdshcdshcdshcdshcdshcdshcdshcdshcdshcdshcdshcd,

[01] : hsdchsdchsdchsdchsdchsdchsdchsdchsdchsdchsdchsdchsdc,

[10] : cdshcdshcdshcdshcdshcdshcdshcdshcdshcdshcdshcdshcdsh,

[11] : dchsdchsdchsdchsdchsdchsdchsdchsdchsdchsdchsdchsdchs,

which confirm our assertions made earlier.

We are interested in finding combinations of R0 and R1 that produce
perfect deals when acting on C, and for this purpose we define two subgroups
of S52, the group of all 52! permutations of 52 objects (in our case cards).

Let
R = 〈R0, R1〉 = 〈[0], [1]〉

be the group of permutations generated by R0 and R1. For members of
R we use the binary notation suggested above. The identity is [], multi-
plication corresponds to concatenation and, to be consistent with the left-
to-right nature of group multiplication, the object of a group action goes
in parentheses on the left. Also we tacitly assume that variables appear-
ing within the square brackets take values in {0,1}. Thus, for example,
(x)[abcd] = Rd(Rc(Rb(Ra(x)))) and [abcd][efg] = [abcdefg]. Incidentally,
cutting and dealing (C)[abcd] always gives one player a yarborough.1 Every
member of R can be expressed in the notation just described since

[0]−1 = [000000000000000000000000000000000000000000000000000],

[1]−1 = [1111111],

which we can write more sensibly with positive exponents: [0]51, [1]7. Using
GAP, we find that R has order

27064431817106664380040216576000000 = 226 26!,

not a large number, roughly three times the square root of 52!. The group’s
centre is Z(R) = 〈[0]26〉, which has order 2, and [0]26 when acting on C just
turns the deck upside down.

1Charles Anderson Worsley Anderson–Pelham, 2nd Earl of Yarborough, offered
£1000–£1 against getting a whist hand with no card better than 9; Pr[yarborough] =
32!/19! · 39!/52! ≈ 1/1828. See https://en.wikipedia.org/wiki/Charles_Anderson-

Pelham,_2nd_Earl_of_Yarborough.

https://en.wikipedia.org/wiki/Charles_Anderson-Pelham,_2nd_Earl_of_Yarborough
https://en.wikipedia.org/wiki/Charles_Anderson-Pelham,_2nd_Earl_of_Yarborough
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We find that the shuffles R2, R3, . . . , R26 add nothing new:

〈R0, R1, R2, . . . , R26〉 = R.

Observe that R26 does nothing, and R25 acting on N just does the trans-
position (26,27). This leads to a very good question. Which transpositions
are in R? The answer is sufficiently important to justify a theorem.

Theorem 1 Suppose 1 ≤ a < b ≤ 52. If a + b = 53, then the group
〈[0], [1], (a, b)〉 is the same as 〈[0], [1]〉; otherwise 〈[0], [1], (a, b)〉 is isomorphic
to S52. Thus (a, b) ∈ R if and only if a+ b = 53.

Proof Use GAP to test each of the 1326 transpositions (a, b). �

One can even find expressions for transpositions of the form (a, 53− a) just
by looking for them:

(1, 52) : [00110101010]23, (2, 51) : [01010001101]23, (3, 50) : [000000010]21,

(4, 49) : [10100011010]23, (5, 48) : [000100000]21, (6, 47) : [000000100]21,

(7, 46) : [01000110101]23, (8, 45) : [000101111]25, (9, 44) : [11100101110]23,

(10, 43) : [001000000]21, (11, 42) : [101111000]25, (12, 41) : [000001000]21,

(13, 40) : [100000000]21, (14, 39) : [00101110111]23, (15, 38) : [0000000111011]25,

(16, 37) : [10111001011]23, (17, 36) : [11001011101]23, (18, 35) : [0011111010010]25,

(19, 34) : [11011100101]23, (20, 33) : [010000000]21, (21, 32) : [010111100]25,

(22, 31) : [01110010111]23, (23, 30) : [0011010111001]23, (24, 29) : [000010000]21,

(25, 28) : [000000001]21, (26, 27) : [00011010101]23.

The first one says that 253 perfect riffle shuffles suffice to exchange the top
and bottom cards whilst leaving the rest of the deck undisturbed. Using
GAP we can also prove a theorem concerning pairs of transpositions.

Theorem 2 For distinct a, b, c, d ∈ {1, 2, . . . , 52}, (a, b)(c, d) ∈ R if and
only if a+ c = b+ d = 53 or a+ d = b+ c = 53.

It turns out that there are 650 distinct elements (a, b)(53 − a, 53 − b),
and GAP tells us that we can generate R from (1, 52) and 25 elements of
the form (1, b), (52, 53− b):
R = 〈(1, 52), (1, 2)(52, 51), (1, 3)(52, 50), (1, 4)(52, 49), . . . , (1, 26)(52, 27)〉.

Theorem 3 The group R is isomorphic to the wreath product C2 wr S26.

Proof Clearly, C2 wr S26 has the correct order, |C2|26|S26| = 226 · 26!. Let

T = (t1, t2, . . . , t26),
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where ti is the pair {i, 53− i}, t = 1, 2, . . . , 26.

In the construction of C2 wr S26 we consider S26 to be acting on T,
while the 26 copies of the cyclic group C2 act on t1, t2, . . . , t26 by or-
dering them one way or the other. A typical element of C2 wr S26 is
X =

(
(α1, α2, . . . , α26), A

)
with α1, α2, . . . , α26 ∈ C2 and A ∈ S26. If

Y =
(
(β1, β2, . . . , β26), B

)
is another element, then the product is defined

by
XY =

((
α1β(1)A, α2β(2)A, . . . , α26β(26)A

)
, AB

)
,

where (i)A is the j that A sends i to when A acts on (1, 2, . . . , 26).

To prove the theorem we show that all the components of the wreath
product are representable as elements of R.

By Theorem 1, for each t ∈ T, there exists a sequence of shuffles Ut =
[s1s2 . . . ] that flips the elements of t; that is, if t = {α, 53−α} say, then Ut

does the transposition (α, 53− α).

By a straightforward computation, we see that the action of [0] on T is
a single 26-cycle:

(t1, t2, t4, t8, t16, t21, t11, t22, t9, t18, t17, t19, t15,

t23, t7, t14, t25, t3, t6, t12, t24, t5, t10, t20, t13, t26).

Indeed, recalling that [0] acts on N by x→ 2x mod 53, we have

t1 = {1, 52} → {2, 51} = t2 → {4, 49} = t4 → {8, 45} = t8 → . . . .

Furthermore, the sequence

V = [0011101111000110]21

acting on N does (1, 2)(51, 52), and therefore V acting on T just does the
transposition (t1, t2). But then [0] and V acting on T generate the group
isomorphic to S26 of all 26! permutations of T. �

For a more concrete construction of the wreath product representa-
tion, first observe that both [0] and [1] acting on N have the property that
(i)[k] = j iff (53 − i)[k] = 53 − j. Therefore all R ∈ R have this property.
Consequently, if (a1, a2, . . . , an) is a cycle of (N)R, R ∈ R, then either n
is even and an/2+i = 53 − ai, i = 1, 2, . . . , n/2, or there is another cycle
(b1, b2, . . . , bn) with bi = 53− ai, i = 1, 2, . . . , n.

Corresponding to R acting on N, we can define a permutation A of
(1, 2, . . . , 26) and a 26-vector C of elements in {1,−1} by

(i)A = (i)R, Ci = 1 if (i)R ≤ 26,
(i)A = 53− (i)R, Ci = − 1 otherwise.



Page 7

The wreath product representation of R is (C,A). If (D,B) similarly rep-
resents S ∈ R, then the product RS is represented by

(C,A)(D,B) =
((
C1D(1)A, C2D(2)A, . . . , C26D(26)A

)
, AB

)
.

One is naturally reminded of Rubik’s cube and its 12 edge pieces, each
of which can be in one of two orientations. Here the relevant group is
C2 wr S12. For the details, see [David Singmaster, Notes on Rubik’s ‘Magic
Cube’, 5th edition, 1980], pages 58–60.

Also inspired by Rubik’s cube, we suggest an interesting challenge of
similar fiendishness.

Unseen by you, someone has shuffled a new deck of cards by a
sequence of perfect riffle shuffles chosen at random from {R0, R1,
. . . , R26}. Devise a strategy to restore the deck to its initial state
using only R0, R1, . . . , R26.

Here is a possible method.

For k = 0, 1, . . . , 25:

Repeatedly shuffle the deck using only shuffles Rk and
Rk+1 chosen at random until cards 1 + k and 52− k are
correct.

And here is an amazing fact. The algorithm just described works! Experi-
ments suggest that the deck will probably get restored after a few thousand
shuffles. Although random processes are involved, I have not yet found an
instance where I had to abort the procedure because of impatience.

To begin our quest for further ways of getting a perfect deal, we define

P = {P ∈ R : for any x, y ∈ S, x = y implies (x)P = (y)P .}

Members of P map suits to suits when acting on S or C. We can refer these
as suit permuting sequences, or maybe just ‘elements of P’. Clearly P is a
subgroup of R.

If P ∈ P, then P [st] ∈ R and P [st] acting on S gives a perfect deal. In
case it’s not obvious, to prove the converse suppose R ∈ R and (S)R gives
a perfect deal. When the deck is undealt and uncut it looks like this:

D = (α, β, γ, δ, α, β, γ, δ, . . . , α, β, γ, δ),

where (α, β, γ, δ) is some permutation of (c, d, h, s). Applying the inverse of
any of {[00], [01], [10], [11]} results in an arrangement like S but possibly
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with the letters permuted. Perhaps it is worth analysing in detail the sim-
plest case, [00]. Acting on N, we have (y)[0]−1 = y/2 mod 53 and therefore
(y)[00]−1 = y/4 mod 53. Now we can determine how the residue classes
modulo 4 get transformed:

y ≡ 0 (mod 4) ⇒ (y)[00]−1 ∈ {1, 2, . . . , 13},
y ≡ 1 (mod 4) ⇒ (y)[00]−1 ∈ {40, 41, . . . , 52},
y ≡ 2 (mod 4) ⇒ (y)[00]−1 ∈ {27, 28, . . . , 39},
y ≡ 3 (mod 4) ⇒ (y)[00]−1 ∈ {14, 15, . . . , 26}.

The other three cases, [01]−1, [10]−1, [11]−1, are trickier to deal with by
hand, but they are easily proved with the help of a computer.

Since any R ∈ R that gives a perfect deal when acting on S must have
the form P [st] with P ∈ P, we can concentrate on finding elements of P.
Before we reveal the true nature of P, let us see how we can build it up
from short sequences of perfect riffle shuffles.

None of the 254 sequences of 1 to 7 perfect riffle shuffles are elements
of P. Hence there are no perfect deals for fewer than 10 shuffles acting on
S except those four given by (2).

When we get to 8 shuffles we find precisely 8 suit permuting sequences:

P8 = {[abc11111] : a, b, c ∈ {0, 1}} ⊆ P.

GAP confirms that they generate a group of order 52:

P8 = 〈P8〉 = 〈[00011111], [00111111]〉 ∼= D52,

where we (GAP and I) use the notation D2n for the symmetry group of the
regular n-gon, the dihedral group of order 2n. It might be instructive to
construct this group by hand. The results of the shuffle sequences acting
on N are

[00011111] : (20, 1, 21, 2, 22, 3, 23, 4, 24, 5, 25, 6, 26,

7, 14, 8, 15, 9, 16, 10, 17, 11, 18, 12, 19, 13)

(33, 52, 32, 51, 31, 50, 30, 49, 29, 48, 28, 47, 27,

46, 39, 45, 38, 44, 37, 43, 36, 42, 35, 41, 34, 40),

[00111111] : (27, 14)(28, 15)(29, 16)(30, 17)(31, 18)(32, 19)(33, 20)(34, 21)

(35, 22)(36, 23)(37, 24)(38, 25)(39, 26)(40, 1)(41, 2)(42, 3)(43, 4)

(44, 5)(45, 6)(46, 7)(47, 8)(48, 9)(49, 10)(50, 11)(51, 12)(52, 13).
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Consider a regular 26-gon G whose vertices are unordered pairs of cor-
responding elements of [00011111]’s cycles: {20,33}, {1,52}, {21,32}, . . . ,
{13,40}. Then [00011111] acts on G by rotating it through 2π/26 and
[00111111] reflects the polygon in the line joining {20,33} and {7,46}.

820, 33<

81, 52<

821, 32<

82, 51<
822, 31<

83, 50<823, 30<84, 49<824, 29<
85, 48<

825, 28<

86, 47<

826, 27<

87, 46<

814, 39<

88, 45<

815, 38<
89, 44<

816, 37<810, 43<817, 36<811, 42<
818, 35<

812, 41<

819, 34<

813, 40<

For 9 to 25, the only elements of P are 152 shuffle sequences of length
16 and 3624 of length 24. All are in P8. The next elements of P are the
eight 26-shuffle sequences

P26 = {[abc00000000000000000000000] : a, b, c ∈ {0, 1}}.

We now have a slightly bigger group: P26 = 〈P26〉 has order 104, it includes
P8, it is isomorphic to C2 × D52

∼= C2
2 × D26, and it has a 3-generator

representation:

P26 = 〈[00011111], [00111111], [0]26〉.

Finally (because I am running low on computer power), there are 96704
32-shuffle elements of P of which only the 52 given in Table 1 are not in
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P26. They generate the much larger group

P32 = 〈[00011111], [0]26, [00000001011110011110011110011100]〉,

which includes P26 and has order 155103152174530560000 = 4 · (13!)2.

Now let
Q = (1, 52)(2, 51) . . . (13, 40).

When Q acts on C it just exchanges the diamonds and spades. Moreover,
by Theorem 1, Q ∈ R. Hence Q ∈ P, and one can check with GAP that
Q 6∈ P32. Thus we have a subgroup of P that is bigger than P32:

Q = 〈[00011111], [00000001011110011110011110011100], Q〉.

GAP confirms that

|Q| = 310206304349061120000 = 8 · (13!)2 = 2|P32|

and that Q is isomorphic to (C2 × C2) o ((A13 ×A13) oD8).

Theorem 4 We have P = Q.

Proof A consequence of its definition is that P is the stabilizer in R of
the structure formed by partitioning the card deck into the suits as a set
of four sets of thirteen elements each. Unfortunately I do not know how to
calculate it. Fortunately GAP does.

Before we prove the theorem we offer an argument which suggests that a
possible element of P \Q must be rather weird. By Theorem 3, any permu-
tation of T = ({1, 52}, {2, 51}, . . . , {26, 27}) together with any combination
of transpositions of the elements of T is achievable with an element of R.
Split T into two ordered sets,

T1 = ({1, 52}, {2, 51}, . . . , {13, 40}),
T2 = ({14, 39}, {15, 38}, . . . , {26, 27}).

Suppose A,B,C,X ∈ R such that A permutes T1, B permutes T2, C either
does nothing or exchanges T1 ↔ T2, and X orders elements of T one way
or the other. By choosing X to line up the suits represented by (T)ABC,
we can arrange for ABCX to be an element of P. The numbers of choices
are 13! for A and B, 2 for C and 4 for X, altogether 8 · (13!)2 = |Q|.

To confirm that |P| = |Q|, I must resort to GAP. The sequence of
commands
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# The perfect riffle shuffles [0] and [1] as cycles.

r0 := (1,2,4,8,16,32,11,22,44,35,17,34,15,30,7,14,28,

3,6,12,24,48,43,33,13,26,52,51,49,45,37,21,42,31,

9,18,36,19,38,23,46,39,25,50,47,41,29,5,10,20,40,27);

r1 := (18,35)(2,3,5,9,17,33,14,27)(4,7,13,25,49,46,40,28)

(6,11,21,41,30,8,15,29)(10,19,37,22,43,34,16,31)

(12,23,45,38,24,47,42,32)(20,39,26,51,50,48,44,36);

# The group R = <[0], [1]>.

gR := Group( r0, r1 );

# The set structure that is to be preserved.

deckS := [ [ 1,2,3,4,5,6,7,8,9,10,11,12,13 ],

[ 14,15,16,17,18,19,20,21,22,23,24,25,26 ],

[ 27,28,29,30,31,32,33,34,35,36,37,38,39 ],

[ 40,41,42,43,44,45,46,47,48,49,50,51,52 ] ];

# Compute the stabilizer in gR of deckS.

gStabS := Stabilizer( gR, deckS, OnSetsDisjointSets );

yields a group of order 8 · (13!)2, the order of Q. �

Another way to create elements of P is by repetition,

[0101000]38,

[00000011]40, [00001011]22, [00100111]16, [01001000]23, [01010011]220,

[01011000]22, [01011001]40, [01011100]12, [01011110]13, [01100111]8,

[01101111]7,

[010001011]130, [010010101]112, [010111011]210, [101001010]112,

[101011101]210, [111011100]210,

[0010000110]34, [0011100011]76, [0110011010]76, [0111010111]42,

[1001110001]114, [1011101001]22,

[00000100111]38, [00001110100]260, [00100011100]44, [01010000101]52,

[01111011010]104, [10000001110]390, [10000011001]130, [10010100101]34,

[10011011101]16, [10101000010]52, [11000001100]130, [11000010001]44,

[11111000101]20, [11111010111]20,

[000010000011]95, [000110000000]176, [000110000100]95, [001100001000]95,

[001100100011]30, [001101000000]20, [001110011000]42, [010000011000]95,

[011000111000]23, [011001100011]14, [011100101000]280, [011110000001]23,

[011110001001]110, [100000010001]76, [100000110000]95, [100011000011]170,

[100100001010]76, [101001101100]170, [101011010111]23, [101011100110]152,

[101111000000]23, [110010000110]44, [110011000001]42, [111000011000]23,
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[111001010000]280,

and here are a few sequences that generate perfect deals:

[011111]251, [0111111]24, [0111111]50, [001111110]28, [001111111]10,

[011111110]10, [101111110]10, [0011111100]5, [0111111100]253,

[1011111101]14, [10111111010]44, [101111110100]7.

Table 1: Suit permuting sequences of length 32

[00000001011110011110011110011100] [00000011110110111100101111010011]
[00010011111010111101001111101011] [00011001111100011111000111110001]
[00011100100000010111100111100111] [00011110000111100001111000011110]
[00011110100111100001111000011110] [00100001011110011110011110011100]
[00100011110110111100101111010011] [00110011111010111101001111101011]
[00111001111100011111000111110001] [00111100100000010111100111100111]
[00111110000111100001111000011110] [00111110100111100001111000011110]
[01000001011110011110011110011100] [01000011110110111100101111010011]
[01010011111010111101001111101011] [01011001111100011111000111110001]
[01011100100000010111100111100111] [01011110000111100001111000011110]
[01011110100111100001111000011110] [01100001011110011110011110011100]
[01100011110110111100101111010011] [01110011111010111101001111101011]
[01111001111100011111000111110001] [01111100100000010111100111100111]
[01111110000111100001111000011110] [01111110100111100001111000011110]
[10000001011110011110011110011100] [10000011110110111100101111010011]
[10010011111010111101001111101011] [10011001111100011111000111110001]
[10011100100000010111100111100111] [10011110000111100001111000011110]
[10011110100111100001111000011110] [10100001011110011110011110011100]
[10100011110110111100101111010011] [10110011111010111101001111101011]
[10111001111100011111000111110001] [10111100100000010111100111100111]
[11000001011110011110011110011100] [11000011110110111100101111010011]
[11010011111010111101001111101011] [11011001111100011111000111110001]
[11011100100000010111100111100111] [11011110000111100001111000011110]
[11011110100111100001111000011110] [11100001011110011110011110011100]
[11100011110110111100101111010011] [11110011111010111101001111101011]
[11111001111100011111000111110001] [11111100100000010111100111100111]
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