Characters and the MacWilliams identities

Jay A. Wood

Department of Mathematics Western Michigan University http://homepages.wmich.edu/~jwood/

Algebra for Secure and Reliable Communications

Modeling

Morelia, Michoacán, Mexico

October 8, 2012

Characters

- ▶ Let G be a finite abelian group (usually additive).
- ▶ A character of G is a group homomorphism $\pi: G \to \mathbb{C}^{\times}$, where \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers.
- ▶ Example. Let $G = \mathbb{Z}/m\mathbb{Z}$ and let $a \in \mathbb{Z}/m\mathbb{Z}$. Then $\pi_a : \mathbb{Z}/m\mathbb{Z} \to \mathbb{C}^{\times}$, $\pi_a(g) = \exp(2\pi i a g/m)$ is a character. Every character of $\mathbb{Z}/m\mathbb{Z}$ is of this form.

JW (WMU)

Character group

- Let \widehat{G} be the set of all characters of G.
- ► Then \widehat{G} is itself a finite abelian group under pointwise multiplication of characters. That is, $(\pi_1\pi_2)(g) := \pi_1(g)\pi_2(g)$ for $g \in G$.
- $ightharpoonup \widehat{G}$ is the *character group* of G.
- $ullet \ |\widehat{G}| = |G|$; in fact, $\widehat{G} \cong G$ (but not naturally).
- $\widehat{\widehat{G}}\cong G$, naturally: $g\mapsto [\pi\mapsto \pi(g)]$.

Products

- ▶ If G_1 and G_2 are two finite abelian groups, then $(G_1 \times G_2)^{\widehat{}} \cong \widehat{G_1} \times \widehat{G_2}$.
- $(\pi_1, \pi_2)(g_1, g_2) := \pi_1(g_1)\pi_2(g_2).$

Vanishing formulas

▶ The character sending every $g \in G$ to $1 \in \mathbb{C}^{\times}$ is written 1, the *principal character*.

5 / 21

JW (WMU) MacWilliams identities October 8, 2012

Linear independence of characters

- ▶ Let $F(G, \mathbb{C}) = \{f : G \to \mathbb{C}\}$ be the set of all functions from G to \mathbb{C} .
- ▶ $F(G, \mathbb{C})$ is a vector space over \mathbb{C} of dimension |G|.
- ▶ The characters of G are linearly independent in $F(G, \mathbb{C})$; in fact, they form a basis.
- ▶ The characters are orthonormal under

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}.$$

Fourier transform

- Let V be a complex vector space.
- ▶ The Fourier transform $\widehat{}$: $F(G, V) \rightarrow F(\widehat{G}, V)$ is a linear transformation defined for $f \in F(G, V)$ by:

$$\hat{f}(\pi) := \sum_{g \in \mathcal{G}} \pi(g) f(g).$$

► Fourier inversion: a is invertible

$$f(g) = rac{1}{|G|} \sum_{\pi \in \widehat{G}} \pi(-g) \widehat{f}(\pi).$$

◆ロト ◆個ト ◆意ト ◆意ト 意 めなぐ

Annihilators

▶ For H a subgroup of G, define the *annihilator*

$$(\widehat{G}:H):=\{\pi\in\widehat{G}:\pi(H)=1\}.$$

- $(\widehat{G}:H)$ is a subgroup of \widehat{G} .
- lacksquare $(\widehat{G}:H)\cong (G/H)^{\widehat{}}$, so $|(\widehat{G}:H)|=|G|/|H|$.
- ▶ $0 \to H \to G \to G/H \to 0$ induces $1 \to (\widehat{G}: H) \to \widehat{G} \to \widehat{H} \to 1$.
- ▶ Double annihilator: $(G : (\widehat{G} : H)) = H$.

Poisson summation formula

▶ For H a subgroup of G and $f: G \rightarrow V$,

$$\sum_{h\in H} f(h) = \frac{1}{|(\widehat{G}:H)|} \sum_{\pi\in (\widehat{G}:H)} \widehat{f}(\pi).$$

Additive codes

- ▶ Let the alphabet A be a finite abelian group.
- An additive code of length n over A is a subgroup $C \subset A^n$.
- ▶ The Hamming weight wt(a) = 1 for $a \neq 0$ in A.
- ▶ Extend to vectors $a \in A^n$ by $wt(a) = \sum wt(a_i)$.

Hamming weight enumerator

▶ For an additive code $C \subset A^n$, the Hamming weight enumerator is the generating function

$$W_{\mathcal{C}}(X,Y) := \sum_{c \in \mathcal{C}} X^{n-\operatorname{wt}(c)} Y^{\operatorname{wt}(c)} = \sum_{i=0}^{n} A_i X^{n-i} Y^i,$$

where A_i equals the number of codewords in C of Hamming weight i.

The MacWilliams identities

Theorem

For an additive code $C \subset A^n$, with annihilator $(\widehat{A}^n : C)$,

$$W_{C}(X, Y) = \frac{1}{|(\widehat{A}^{n} : C)|} W_{(\widehat{A}^{n} : C)}(X + (|A| - 1)Y, X - Y).$$

- ▶ Because $|\widehat{A}| = |A|$ and $(A^n : (\widehat{A}^n : C)) = C$, roles of C and $(\widehat{A}^n : C)$ can be reversed.
- ▶ This version is due to Delsarte, 1972.

Strategy of proof

- ▶ The idea of the proof is due to Gleason.
- Apply the Poisson summation formula

$$\sum_{h\in H} f(h) = \frac{1}{|(\widehat{G}:H)|} \sum_{\pi\in (\widehat{G}:H)} \widehat{f}(\pi),$$

with
$$G = A^n$$
, $H = C$, $(\widehat{G} : H) = (\widehat{A}^n : C)$, and $f(h) = X^{n-\operatorname{wt}(c)}Y^{\operatorname{wt}(c)}$.

Form of \hat{f} , n=1

▶ For $f(c) = X^{n-\text{wt}(c)}Y^{\text{wt}(c)}$, what is \hat{f} ? Case n = 1:

$$\begin{split} \hat{f}(\pi) &= \sum_{a \in A} \pi(a) f(a) \\ &= \sum_{a \in A} \pi(a) X^{1-\operatorname{wt}(a)} Y^{\operatorname{wt}(a)} \\ &= X + \sum_{a \neq 0} \pi(a) Y \\ &= \begin{cases} X + (|A| - 1)Y, & \pi = 1, \\ X - Y, & \pi \neq 1. \end{cases} \end{split}$$

14 / 21

JW (WMU) MacWilliams identities October 8, 2012

Form of \hat{f} , general n

- ► For general *n*, we take the product of 1-dimensional results.
- For $\pi = (\pi_1, \pi_2, \dots, \pi_n) \in \widehat{A}^n$,

$$\hat{f}(\pi) = \hat{f}(\pi_1)\hat{f}(\pi_2)\cdots\hat{f}(\pi_n)
= (X + (|A| - 1)Y)^{n - \operatorname{wt}(\pi)}(X - Y)^{\operatorname{wt}(\pi)}.$$

▶ Here, wt(π) counts the number of $\pi_i \neq 1$.

Comments

 The format of the MacWilliams identities for additive codes was

$$W_C(X,Y) = \frac{1}{|(\widehat{A}^n : C)|} W_{(\widehat{A}^n : C)}(X + (|A| - 1)Y, X - Y).$$

- ► Can we identify $(\widehat{A}^n : C)$ with a subgroup of A^n ? In a natural way?
- ► What about additional structure: if A is a field, a ring, or a module?

Finite fields (a)

- ▶ Prime fields: for $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$, then $\theta_p(a) = \exp(2\pi i a/p)$ is a character of \mathbb{F}_p .
- ▶ Every character of \mathbb{F}_p is of the form $a \mapsto \theta_p(ba)$, for some $b \in \mathbb{F}_p$.
- ▶ In general, consider \mathbb{F}_q , $q=p^\ell$, with trace function $\operatorname{Tr}_{q/p}:\mathbb{F}_q\to\mathbb{F}_p$, $\operatorname{Tr}_{q/p}(a)=a+a^p+a^{p^2}+\cdots+a^{p^{\ell-1}}$. Define $\theta_q=\theta_p\circ\operatorname{Tr}_{q/p}$, a character of \mathbb{F}_q .
- Every character of \mathbb{F}_q is of the form $a \mapsto \theta_q(ba)$, for some $b \in \mathbb{F}_q$.

Finite fields (b)

- ▶ $\widehat{\mathbb{F}_q} \cong \mathbb{F}_q$ as vector spaces, and $\widehat{\mathbb{F}_q}^n \cong \mathbb{F}_q^n$ as vector spaces: $y \in \mathbb{F}_q^n \mapsto (a \mapsto \theta_q(a \cdot y))$, where \cdot is the dot product on \mathbb{F}_q^n .
- ▶ Under this isomorphism, $(\widehat{\mathbb{F}_q^n}:C)$ corresponds to

$$C^{\perp} := \{ y \in \mathbb{F}_q^n : c \cdot y = 0, c \in C \}.$$

MacWilliams identities for finite fields

▶ This leads to the original version of the MacWilliams identities, due to MacWilliams, 1961–1962, for $A = \mathbb{F}_q$:

$$W_C(X,Y) = \frac{1}{|C^{\perp}|} W_{C^{\perp}}(X + (q-1)Y, X - Y).$$

Finite rings

- ▶ Suppose A = R, a finite ring. The same identifications that worked for finite fields will work here, provided $\widehat{R} \cong R$ as one-sided R-modules.
- ▶ Then $\widehat{R}^n \cong R^n$, and $(\widehat{R}^n : C)$ can be identified with

$$I(C) := \{b \in R^n : b \cdot c = 0, c \in C\},\ r(C) := \{b \in R^n : c \cdot b = 0, c \in C\}.$$

MacWilliams identities for finite rings

Assume R is a finite ring satisfying $\widehat{R} \cong R$ as one-sided R-modules. Then:

$$W_C(X,Y) = \frac{1}{|I(C)|} W_{I(C)}(X + (|R| - 1)Y, X - Y).$$

- ▶ Similarly for r(C) in place of I(C).
- In the next lecture we discuss rings satisfying $\widehat{R} \cong R$: the finite Frobenius rings.

