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The Shoelace Formula

The Shoelace Formula calculates the area of a polygon from the
coordinates of its vertices, listed in anticlockwise order.

Area =
1

2
( x0y1 − y0x1

+x1y2 − x2y1

+x2y3 − x3y2

+x3y4 − x4y3

+x4y5 − x5y4

+x5y0 − x0y5 ) .

It takes its name from the ‘interlacing’ of x and y ordinates. But
whom might it be named after?
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General formula
For an n-vertex polygon

we write

Area =
1

2
(x0y1 − x1y0 + x1y2 − x2y1 + . . .+ xn−1y0 − x0yn−1) .

It works for polygons that are non-convex and sometimes, but not
always, for ones that are non-simple, i.e. with edges crossing other
than at vertices.
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Using the exterior product

A short-hand simplifies Shoelace-related proofs.

Write vi for vertex
(xi , yi ). Write vi ∧ vj ,
or more simply vivj ,
for the exterior product
xiyj − xjyi . Notice that
vivj = −vjvi and that
v2i = 0.

Actually, in this 2D context, the exterior product is just the
(magnitude of the) cross product of position vectors, calculated as
for example

vi × vj = det

(

xi xj
yi yj

)

.
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Exterior product version of Shoelace

Area =
1

2
(x0y1 − x1y0 + x1y2 − x2y1 + . . .+ xn−1y0 − x0yn−1) .

becomes

Area =
1

2
(v0v1 + v1v2 + . . .+ vn−1v0) .

Example application:
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Triangular shoelaces
The position vectors of a triangle are given as: v0, v1, v2.

Basic fact: the area of the triangle is the cross product of the
direction vectors of any two sides in anticlockwise order.

Area =
1

2
(−v0 + v1)× (−v1 + v2) = −

1

2
(−v2 + v1)× (−v1 + v0)

=
1

2
(−v1 + v2)× (−v2 + v0) = −

1

2
(−v0 + v2)× (−v2 + v1)

=
1

2
(−v2 + v0)× (−v0 + v1) = −

1

2
(−v1 + v0)× (−v0 + v2)

Robin Whitty Who invented the Shoelace Formula?



Anticlockwise shoelace

Area =
1

2
(−v0 + v1)× (−v1 + v2)

=
1

2
(−v0 ×−v1 +−v0 × v2 + v1 ×−v1 + v1 × v2)

=
1

2
(v0 × v1 + v2 × v0 + 0 + v1 × v2)

=
1

2
(v0 × v1 + v1 × v2 + v2 × v0)

=
1

2
(v0v1 + v1v2 + v2v0) .

So Shoelace follows ‘from first principles’ for triangles, respecting a
‘rule of signs’ for clockwise/anticlockwise orientation.
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Non-simple shoelace

Left-hand ‘triangle’ area = 6/5;
right-hand ‘triangle’ area = −27/10.
Area of polygon = 6/5 − 27/10 =
−3/2.
We shall see that Shoelace gives the
same answer in this simple case.

Shoelace:

Area =
1

2
(x0y1 − x1y0 + x1y2 − x2y1 + . . .+ xn−1y0 − x0yn−1) .

1

2
(0× 3− 3× 0 + 3× 0− 3× 3 + 3× 2− 0× 0 + 0× 0− 0× 2) = −

3

2
.
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∆, the triangle areas matrix

Denote by ∆ij the area of the triangle on polygon vertices i , j , j +1,
the numbering taken modulo n. This area is taken as positive or
negative according to whether i , j , j + 1, i has counterclockwise or
clockwise orientation relative to the orientation of the polygon.

Left we have
highlighted areas
∆0,1 = 2 and
∆2,3 = −7/2.

Note also ∆0,2 =
∆0,4 = 0.
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Shoelace and the triangle areas matrix

Apply Shoelace to row zero (wlog) of the ∆ matrix to calculate all
triangle areas from vertex v0:

∆0,1 ∆0,2 · · ·

v0v1 �
��v0v2

1
2

v1v2 + v2v3 + · · ·

�
��v2v0 �

��v3v0

Cancellation due to vi ,0 = −v0,i
means that each ∆ row sum ex-
actly duplicates Shoelace:

Area =
1

2
(v0v1 + v1v2 + v2v3 + . . . .
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∆ for non-simple polygons

The ∆ matrix for the example non-simple polygon is shown below:

The Shoelace calculation is constructed from just two entries. In
the first row these are ∆0,1 = −9/2 and ∆0,2 = 3.
They are not individually duplicating the components of Shoelace:
they add and then subtract the shaded triangle area of 9/5.
Note that ∆0,1 + 9/5 = −27/10 while ∆0,2 − 9/5 = 6/5, that is,
the areas of the two triangles constituting the polygon.
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Shoelace may fail for non-simple polygons

The figure below is a 5-vertex pentagram:

The points of intersection of
the five sides are

A (12/7, 12/7)
B (3, 3)
C (3, 4)
D (12/5, 4)
E (4/3, 20/9)

The area of the polygon, considered as the area enclosed by the
outside sequence of points, v0Av3Bv1Cv4Dv2Ev0, is 794/105.

However, Shoelace, applied to the vertices taken in (anticlockwise)
order, is 19/2.
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∆ matrix values for the pentagram

Using the ∆ matrix it is easy to see what has gone wrong:

∆ areas shaded,
green for posi-
tive, red for neg-
ative.
∆0,1 + ∆0,2 +
∆0,3 = 19/2

We see that the central pentagonal area has been counted twice!
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So whose is the Shoelace formula?
English Wikipedia:

Albrecht Meister 1770:
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The origins of the polygon

Pictures from Meister

1770:

Meister vs. Poinsot:
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Meister’s concerns
Google translate from Latin:
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Gauss’s disclaimer

Google translate from German:
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Back to Gauss
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Gauss according to Carnot?

Robin Whitty Who invented the Shoelace Formula?



Or Gauss according to Schumacher?
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Schumacher’s formula?
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