
MTH6105 Algorithmic Graph Theory

Week 8. Lecture 3
Alternating Paths: Recognising Bipartite Graphs
The problem of deciding if a graph is bipartite can be solved greedily. One way to see this is a nice
adaptation of our old classic, the MaximalSubtree algorithm. This is a slight digression (you willnot
be assessed on this adaptation) but it introduces a key idea in the theory of matchings.

Grow Bipartition Subtree(G)
# Input: connected graph G = (V(G), E(G))

Choosev ∈ V(G); T := ({v}, ∅) # T is a tree with one vertex v and no edges
X1 := {v}; X2 := ∅ # X1 will be one partition for the bipartite graph, X2 will be the other.
while there is an edgexy leavingT do

V(T ) := V(T ) ∪ {y}; E(T ) := E(T ) ∪ {xy} # Growing the tree, as usual...
if x ∈ X1 then X2 := X2 ∪ {y} elseX1 := X1 ∪ {y} fi

od;
return (X1, X2)

Here is an example of how GrowBipartition Subtree executes on a graph which is not bipartite:

Claim: If X1, X2 is the output of GrowBipartition Subtree(G), thenG is bipartite if and only if no
edge ofG has both endpoints inXi, i = 1,2.

We shall prove this using the following standard result (dueto König, 1916; the ‘if’ part is not quite
trivial):

Lemma A graphG is bipartite if and only if every cycle has an even number of vertices.

Proof of Claim: For the ‘if’ part, suppose that no edge ofG has both endpoints inXi, i = 1,2.
SinceG was assumed to be connected, GrowBipartition Subtree will create a spanning tree. Then
X1∪X2 = V(G). Also X1∩X2 = ∅ since no vertex is assigned to anXi more than once. So by definition
G is bipartite.

For the ‘only if’ part, suppose that some edge joins two verticesx and y both belonging toX1 or
to X2: let us assume it isX1. Now there is a unique pathP from x to y in the tree created by
Grow Bipartition Subtree. By construction,P must alternate betweenX1 andX2. But P begins and
ends inX1, so it has an odd number of vertices. ThenP ∪ {xy} is an odd cycle, so by the LemmaG
cannot be bipartite. �

We can see this proof in action in the example above: verticesu andv both belong toX1; and there is
an alternating path on 7 vertices in the spanning tree which alternates betweenX1 andX2. Of course,
this is not the shortest odd cycle but any odd cycle is enough to show the graph is not bipartite.
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We shall use the idea of alternating paths to turn maximal matchings progressively into maximum
matchings. Here is the maximal but non-maximum matching which we had earlier:

It is convenient to label the edges — the labels are not weights, they are just there for reference. Thus
we can specify the matching as the subset of edgesM = {c, h, n}.

We adapt the alternating path idea fromvertices to edges: here is a pathP which alternates between
M-edges and non-M-edges:

Like the alternating path in our non-bipartite graph on the previous page, the pathP has odd parity;
this time it is the number of edges which is odd. And like the non-bipartite alternating path,P begins
and ends with the same thing (a non-M-edge).

What if we swapM-edges and non-M-edges all along the pathP: sinceP has odd length we will
swap an even number ofM-edges with alarger odd number of non-M-edges.And our matching will
get bigger:

This extension of the matching works precisely because the end edges ofP, that isa and j, both had
an end-point not inM.

Definition: (1) A path in graphG is calledM-alternating for a matchingM if its edges alternate
betweenM andE(G)\M (non-M);

(2) A vertexv of G is calledM-unsaturated for a matchingM if it belongs to no edge ofM;

(3) An M-alternating path in a graphG with matchingM is calledM-augmenting if its first and last
vertices areM-unsaturated.

Theorem:1 A matchingM in a graphG is maximum if and only if no path inG is M-augmenting.

The ‘only if’ part of the proof of this theorem is easy: we havejust seen that anM-augmenting path
leads to a larger matching. The ‘if’ part is a bit more complicated and is left as an exercise.

To conclude our example, the 2nd version of our
graph again has anM-augmenting path: edgesp, m
and k form such a path. SwitchingM and non-M
edges on this path gives a perfect matching:

1Papadimitriou and Steiglitz attribute this theorem to C. Berge (1957) and R.Z. Norman and M.O. Rabin (1959). But
Alexander Schrijver, who is very thorough about historicaldetails, attributes it to Petersen in 1891, almost 60 years earlier!

2


