MTHe105 Algorithmic Graph Theory

Week 8. Lecture 3
Alternating Paths: Recognising Bipartite Graphs

The problem of deciding if a graph is bipartite can be solveskdily. One way to see this is a nice
adaptation of our old classic, the Maxim@ubtree algorithm. This is a slight digression (you wok
be assessed on this adaptation) but it introduces a keyndba theory of matchings.
Grow_Bipartition SubtreeG)
# Input: connected graph G = (V(G), E(G))
Chooser € V(G); T := ({v},0) #T isatreewith one vertex v and no edges
Xpi={v}; X2 =0 # X1 will be one partition for the bipartite graph, X, will be the other.
while there is an edggy leavingT do
V(T) :=V(T)U{y}; E(T) ;== E(T)U {xy} # Growing thetree, asusual...
if X e Xy then X; := X, U {y} elseX; := Xy U {y} fi
od;
return (X, Xz)
Here is an example of how Gra®ipartition_Subtree executes on a graph which is not bipartite:
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Claim: If X;, X, is the output of GrowBipartition_ SubtreeG), thenG is bipartite if and only if no
edge ofG has both endpoints iK;, i = 1, 2.

We shall prove this using the following standard result (tukonig, 1916; the ‘if’ part is not quite
trivial):

Lemma A graphG is bipartite if and only if every cycle has an even number ofiges.

Proof of Claim: For the ‘if’ part, suppose that no edge Gfhas both endpoints i, i = 1,2.
SinceG was assumed to be connected, GiBipartition Subtree will create a spanning tree. Then
X1UX; = V(G). Also X;N X, = 0 since no vertex is assigned to #more than once. So by definition
G is bipartite.

For the ‘only if’ part, suppose that some edge joins two eedix andy both belonging tax; or
to X,: let us assume it iX;. Now there is a unique patR from x to y in the tree created by
Grow_Bipartition_ Subtree. By constructior? must alternate betweexy and X,. But P begins and
ends inXy, so it has an odd number of vertices. THew {xy} is an odd cycle, so by the Lemnia
cannot be bipartite. O

We can see this proof in action in the example above: verti@glv both belong toX;; and there is
an alternating path on 7 vertices in the spanning tree whtelhnates betweekK; andX,. Of course,
this is not the shortest odd cycle but any odd cycle is enooghdow the graph is not bipartite.
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We shall use the idea of alternating paths to turn maximathuags progressively into maximum
matchings. Here is the maximal but non-maximum matchingwiane had earlier:
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It is convenient to label the edges — the labels are not wejghey are just there for reference. Thus
we can specify the matching as the subset of ed§jes{c, h, n}.

We adapt the alternating path idea freerticesto edges here is a pathi® which alternates between
M-edges and noiM-edges:
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Like the alternating path in our non-bipartite graph on thevipus page, the path has odd parity;
this time it is the number of edges which is odd. And like the-hipartite alternating patt begins
and ends with the same thing (a nbhedge).

What if we swapM-edges and noM-edges all along the path: sinceP has odd length we will
swap an even number dM-edges with darger odd number of norivi-edges And our matching will
get bigger:
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This extension of the matching works precisely becauseridesdges oP, that isa and j, both had
an end-point not irM.

Definition: (1) A path in graphG is called M-alternating for a matchingM if its edges alternate
betweenM andE(G)\M (non-M);

(2) A vertexv of G is calledM-unsaturated for a matchingM if it belongs to no edge of4;

(3) An M-alternating path in a grap® with matchingM is calledM-augmentingif its first and last
vertices areM-unsaturated.

Theorem:! A matchingM in a graphG is maximum if and only if no path i is M-augmenting.

The ‘only if’ part of the proof of this theorem is easy: we hgust seen that aM-augmenting path
leads to a larger matching. The ‘if’ part is a bit more comaiéx! and is left as an exercise.

To conclude our example, the 2nd version of oL dn e

graph again has all-augmenting path: edggs m b il m

andk form such a path. Switchingyy and nonM P n/

edges on this path gives a perfect matching: ¢ C S ! P
d b 0

Ipapadimitriou and Steiglitz attribute this theorem to Crg@e(1957) and R.Z. Norman and M.O. Rabin (1959). But
Alexander Schrijver, who is very thorough about historaetails, attributes it to Petersen in 1891, almost 60 yeatiee
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