MTH6105 Algorithmic Graph Theory
Week 8. Lecture 1

Matchingsin Graphs
In a graphG = (V, E), amatching is a subset of the edge set®fsay,M C G satisfying

no vertex of G belongs to more than one edge of M.

In other words, we impose the degree condition:

du(v) < 1lforallvin V. (2)

An example is shown below, with the convention that edges@htatchingV are shown in bold while
non-matching edges are shown in grey.

G M

O—0—-0

Informally we see that a matching ‘pairs up’ vertices: eadbeein the matching separate§ s two
endpoints.

A matchingM of G which is a spanning subgraph (i.e. contains every vert€X)a$ calledperfect.

The above matching is not perfect, and it cannot be becaesgréphG has 5 vertices and a perfect
matching must include every vertex in a pair, which requaesven number of vertices. Indeed, any
matchingM must satisfy

1
IM[ < SV, (2)

where|M| denotes the number of edgedvh And a matching is perfect precisely when we have equality.

Not every matching will be perfect even whgfiis even. To see this, add an extra vertex to our example,
see below left:
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The graphG’ is larger butM remainsmaximal: it cannot be extended without violating condition (1).

However,maximal does not implymaximum for matchings. The matchiniyl” above right, has an extra
edge and is perfect. Whenever maxirgainaximum we know at once that the greedy approach, which
worked fine for minimum weight spanning trees and shortetspavill not guarantee optimality.

Remember: maxiMAL= THIS matching cannot be made bigger; maxiMUMNO matching can be
made bigger.

The matchingVl was maximal AND maximum in grap@; but inG’ it is maximal but NOT maximum.



We will emphasise the potentialfiiculty of finding a maximum matching with another example:

Gy M: M <

In this caseM is a perfect matching foG; with |V|/2 = 5 edges, wheredd’ is a maximal matching
but has only 3 edges. We can extend this example to give ainténfamily of graphsGyx which have a
perfect matching but which contain maximal matchings withitearily fewer edges thajv|/2:
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So G is the graph withk ‘upper squares’. You do not have to remember these graphs for the
MTHG6105 exam! There is nothing special about them; graph theorists inveimite families of graphs
whenever they need to show that a particular kind of behavsopossible. In this case we want to show
thatGy has a maximal matching with many fewer edges than the maxipassible.

Itis easy to calculate th&y has 16+11(k—1) = 11k+5 edges and 1:06(k— 1) = 6k+4 vertices. It has a
perfect matching, extending the one shown abové&fan the obvious way. This haské-4)/2 = 3k+2
vertices. And it has a maximal matching consisting of alldtagonal edges; ar@, has X+1 diagonals.
So the diagonal matching hak 8 2 — (2k + 1) = k + 1 fewer edges than the maximum possible.

One more example: we should establish that there are grapus even number of vertices which have
no perfect matching. This is easy: thiar graphswhich are trees on+ 1 verticesn > 0 with a central
vertex of degre@ can never have a matching with more than one edge:
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These graphs are denotkd,; they are the so-callecbmplete bipartite graphson 1 and n vertices.
Bipartite graphs

A graphG = (V,E) is calledbipartite if there is a partition ol into setsX andY (soXUY =V and
X N'Y = 0) such that that every edge Gfhas an endpoint in each #fandY; informally, all the edges
‘go between’X andY. The setsX andY are called theparts of the graphG.

The image below, far left, illustrates this idea. Some dotxamples are also giverKss is famous

for being nonplanar (no drawing in the plane avoids edgeshwtioss); however it does have a perfect
matching (e.g. the vertical edge#®);, doesnot have a perfect matching for the simple reason that its
parts have dierent sizes. The graph on the right is also bipartite althauig not drawn in a way which
exhibits its parts. One part is shown by shading.
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Our interest in bipartite graphs lies in the fact that it isam@asier to find maximum matchings in the
case where a graph is bipartite.




