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… or should that be 
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1. Inclusion–Exclusion – the idea 

2. A serious example: counting prime numbers 

3. A textbook example: counting surjective functions 

4. What ought to be a textbook example (but I can’t see how): 
putting balls into bins so that some bin gets exactly one ball 

5. Why I’m interested in putting balls into bins 
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Inclusion Exclusion: the 2 set case 

Example: roughly how many numbers in the range 1,…, 100 

are divisible by either 2 or 3 (or both)? 

Solution: there are  

     about 50 even numbers in the range; 

     about 33 multiples of 3, of which half are even; 

So divisible by 2 or 3  50 + 33 – 16 = 67. 
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Inclusion Exclusion: the 3 set case 

|AB  C| = |A| + |B| + |C| 

                         – |A  B| – |A  C| – |B  C|  

                               + |A  B  C| 

Example: An opinion poll reports that 

the percentage of voters who would be 

satisfied with each of three candidates 

A, B, C for President is 65%, 57%, 

58% respectively. Further, 28% would 

accept A or B, 30% A or C, 27% B or 

C, and 12% would be content with any 

of the three. What do you conclude? 

Solution: the percentage of voters who reject all candidates is 

                     100 – 65 – 57 – 58+28+30+27 – 12 =  –7; 

so there must be a mistake. 

(from webspace.maths.qmul.ac.uk/p.j.cameron/comb/ch5s.pdf) 



A B 

C 

|AB  C| = |A| + |B| + |C| 

                         – |A  B| – |A  C| – |B  C|  

                               + |A  B  C| 

|A| : multiples of 2  25 

|B| : multiples of 3  16 

|C| : multiples of 5  10 

|A  B| : multiples of 6  8 

|A  C| : multiples of 10  5 

|B  C| : multiples of 15  3 

|A  B  C| : multiples of 30  1 

Solution: the number of composite numbers up to 50 is about 

          25 + 16 + 10 – 8 – 5 – 3 + 1 = 36;     (includes 2,3,5 so subtract 3, omits 1 so add 1) 

so there are about 50 – (36 – 3 + 1)  = 16 primes. 

Three sets and counting primes 

Question: roughly how many prime numbers 

are there less than 50? 



The Eratothenes–Legendre sieve I 

Inclusion–exclusion counts 162 
numbers in the coloured regions.  

Of these, 4 are the primes we are 
taking multiples of ; and non-prime-
non-composite 1 has been missed 
out. 

So our best estimate for (211) is: 

      211 – 162 + 4 – 1 = 52.  

What is (211), number of primes  211? 

But we are out by 5 because we did not include – exclude 
two of the primes 211  14.5. 



The Eratothenes–Legendre sieve II 

What we 
want 

Put back 
primes we 
needed to 
sieve  by 

Non-prime-non-
composite 

+ 1  for multiples of even numbers of primes, and for d = 1 

– 1 for multiples of odd numbers of primes 
 

How many 
multiples 



The Coupon Collector’s Problem I 

What is the probability  of getting all four dinosaurs by opening five packets of cereal? 
 
How many functions map a domain of size 5 to a range of size 4?  

How many of these are surjective (onto)? 

1 2 3 4 



The Coupon Collector’s Problem II 
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Number of functions from domain of 
size  m  to a range of size  n:  
 
 
So 
 
 
Similarly 
 
 
 
So 

The Coupon Collector’s Problem III 
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The Coupon Collector’s Problem IV 

Number of non-surjections 
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Balls in bins I 

What is the probability  of getting  every one of  m  dinosaurs in a stream of  n  from the 
packet? 

How many ways of putting  n  identical balls into  m  bins?  

How many of these place at least one ball into each bin? 

1 2 3 4 

Putting  n  identical balls into  m  bins: coupon collector’s but with a magic sugar puffs 
packet that generates a stream of dinosaurs 

Each arrow is a 
ball that hits one 
of the dinosaurs 



Balls in bins II 

So now we have  m  bins into which we place n  balls with repetition allowed 
and we want at least one bin to get exactly 1 ball. 
 
Basic count: number of ways to place n  balls into  m  bins: 
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E.g. 6 balls into 4 bins:  take                    places. Choose              bin markers and the 
remaining  6 places are occupied by the balls. 

                           __  __  __  __  __  __  __  __  __   =   1 ball, 0 balls, 3 balls, 2 balls     
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Balls in bins III 

What is the probability  of getting  
every one of  n  dinosaurs in a 
stream of  m  from the packet? 

How many ways of putting  m  identical balls into  n  bins?  

 

How many of these place at least one ball into each bin? 

Take  m  of the  n  balls and place one in each bin. 

Now place the remaining               balls  in all possible ways:   
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So probability of a surjection with 5 balls from the magic packet is 

No inclusion–exclusion needed… 

But you’re worse off with the magic cereal packet! 
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Balls in bins IV 

What is the probability  of getting  
at least one of the  n  dinosaurs 
exactly once in a stream of  m  
from the packet? 

How many ways of putting  m  identical balls into  n  bins?  

 

How many of these place exactly one ball into at least one of the bins? 

Let 
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Balls in bins V 
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E.g.  4,6  nm
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Balls in bins VI 

E.g.  7,5  nm

5   1 1 1 1 3   :

10 1 1 1 2 2       

20  0 1 1 1 4  :

60 0 1 1 2 3       

30  0 0 1 1 5  :

20 0 1 2 2 2       

30 0 0 1 3 3       

60 0 0 1 2 4       

20  0 0 0 1 6   :
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Balls in bins VII 

We can try and do something similar to the approach to counting 
‘surjective ‘ placements of balls in bins.  
We’ll choose a bin and put one ball in it. Then we’ll put the remaining 
n 1 balls into the remaining m 1 bins  

choices  
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BUT this overcounts because many remaining choices will also create single occupancy bins 



Balls in bins VIII 

E.g.                                continued  7,5  nm

5   1 1 1 1 3   :

10 1 1 1 2 2       

20  0 1 1 1 4  :

60 0 1 1 2 3       

30  0 0 1 1 5  :

20 0 1 2 2 2       

30 0 0 1 3 3       

60 0 0 1 2 4       

20  0 0 0 1 6   :
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Balls in bins IX 
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This looks like 
inclusion – exclusion!  
If so then that would 
be the preferred way 
to count single ball 
occupancy placements. 



An application I 

n  players commit privately to a placement of 2 tokens on the cells of an m  m grid. 

Here, n = 3,  m = 9. 

They reveal their choices and their stake money is shared equally according to the 
tokens which single-occupy cells.  

E.g. in game (a), players 1,2 and 3 share the stake. In game (c), players 1 and 2 share 
the stake in the ration 2:1. 

Question: if there are no singly-occupied cells then ‘house’ takes the stake. What 
values of n and m make this profitable for the house? 



An application II 
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If  2n approaches  m  (it’s  2n because each player has 2 tokens) then there is 
less chance of single occupany so House wins. 

But the larger the value of n, the bigger the stake, so more incentive to play. 


