| THEOREM OF THE DAY

M oessner’s Magic For integersn > 1 and k > 2, the value of n* is given by
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M oessner’s magic (algorithmic version): the following appliesto ~ The sum series of a sequence with evetly en- 1, o 5 9 990000 1 1
every integek > 2: if you cross out everk-th number from the  {ry deleted may be calculated by multiplying thi o, o 540 0 2 3
series of natural numbers and form the sum series from theirem Seéquence (as a column vector) by a suitable mat| .~ o 0 ; .
ing numbers; then cross out eveky« 1)-th number from this and ~ as illustrated on the right. The repeated process| =~~~ 0 11| |,
form the sum series again, then cross out eviry 2)-th number ~ deletion and summing in Moessner's algorithm thef -~ = = - = © . o
from this and form the sum series again, and continue thisgse ~becomes a product of matrices. Below, this is shov| = = = = = = ) )
until you finally cross out every second number at the {)-th step ~ Schematically fok = 5. The matrix that deletes ev Cioiioiion -
and then form the sum series, this creates the serikgtopowers ~ €ry kth entry will have a number of rows that is ’
1K, 2K 3K 4k .. fraction k — 1)/k of its number of columns. So the 8
. number of columns of each matrix must be chosen 9
Eg k=3 i 3? 3 é’ 1/52 6 179 ZE/ 9 :1;7) match the number of rows of the following matrix. 10
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Alfred Moessner presented his method in 1951. For John 2nd delete every .
Conway and Richard Guy it deserved the name ‘magic’, 3rd elote cvere |
] ’ ) elete every
partly perhaps for its having apparently eluded centuries 4th delete every
of mathematicians such as Euler and Jacobi. Although o

described here as a surprising formula for calculating inJ he interest in these matrix products is that they produca wie may call “Moessner matrices”
teger powers it has been more widely treated as a .Sievgvhl_ch have a beautn‘ully simple structure. This structd&p_lcted belovv_ forouk =5 schema,_

) . . easily translates into the double sum of our theorem whithgagh a bit cumbersome, magi-
which may be generalised to produce manffedent  cqjly achieves calculation &th powers using powers no higher than tke-@)-th.
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