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How convex is this polygon?

(0,2)

(1,1)

(4,0)

(6,3)

(6,5)

(2,3)

(1,5)



Is this polygon convex?

Maybe…

Or maybe not…

For any two points on the boundary, does the 
straight line joining them remain interior to 
the polygon?

How can we systematically check every pair of points?
A certificate of non-convexity is easy to describe – 
what about a certificate of convexity?
Is this even algorithmic?

Is this a certificate of convexity?



Or, same thing, a list of coordinates of vertices.

Suppose our polygon is given as a set of consecutive edge vectors

The edge from (𝑎, 𝑏) to 𝑐, 𝑑  is the direction 
vector − 𝑎, 𝑏 + 𝑐, 𝑑

We will follow consecutive direction vectors and make 
sure they always turn in the same direction



Suppose 𝑎𝒊 + 𝑏𝒋 + 𝑐𝒌 and 𝑑𝒊 + 𝑒𝒋 + 𝑓𝒌 are two vectors 
in three dimensions. The cross product  

𝑎𝒊 + 𝑏𝒋 + 𝑐𝒌 × 𝑑𝒊 + 𝑒𝒋 + 𝑓𝒌
is a vector in the direction perpendicular to their 
common plane. It is conveniently calculated as a 
determinant:

𝒊 𝒋 𝒌
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

It is positive if our two vectors follow each other 
counterclockwise and negative otherwise.

If we are in the plane then 𝑐 = 𝑓 = 0 and we just have
𝑎𝒊 + 𝑏𝒋 × 𝑑𝒊 + 𝑒𝒋 = (𝑎𝑒 − 𝑏𝑑) 𝒌

and we may ignore the fact that this is a vector. 
If the 2 × 2 determinant is positive we are turning 
counterclockwise, otherwise we are turning clockwise.

Cross product and direction of turn



If the 𝑛 vertices of a polygon are specified as position 
vectors 𝒗0, 𝒗1, …,  𝒗𝑛−1, then the area of the polygon is half 
the sum of the cross poducts: 𝒗𝑖 × 𝒗𝑖+1, 𝑖 = 0,… , 𝑛 − 1. 

Compare to Shoelace formula

2 × Area = 0,2 × 1,1 + 1,1 × 4,0 +⋯+ 1,5 × 0,2 .



Cross product and direction of turn in the plane

− 4,0 + (6,3) × − 6,3 + 6,5
= (2,3) × 0,2 = 4 − 0 = 4

− 6,3 + (6,5) × − 6,5 + 2,3
= (0,2) × −4,−2 = 0 − −8 = 8

− 6,5 + (2,3) × − 2,3 + 1,5
= (−4,−2) × −1,2 = −8 − 2 = −10

So we have our certificates:
Convex: list of 𝑛 non-negative cross products
Non-convex: single negative cross product
This is even a linear test (in the input size, say, list 
of vertex coordinates)



Convexity by triangulation
From vertex 𝑖 we take the areas of all triangles 
subtended on opposite edges

𝑖
𝑗

𝑗 + 1

The area is positive if the triangle has a 
counterclockwise orientation, otherwise it is 
negative

𝑖

𝑗

𝑗 + 1



The matrix ∆𝑖,𝑗

So this is a matrix full of certificates. But it’s quadratic for convexity testing isn’t it?
Surprisingly not.



∆𝑖,𝑗 has rank 3

Depends on a rather unexpected relationship between products 
of triangle areas:

∆1,2∆0,𝑘 − ∆0,2∆1,𝑘 − ∆0,1∆3,𝑘= ∆1,2 − ∆0,2 −  ∆0,1  ∆2,𝑘

All this 
determined 
by first three 
rows

11

2
×
5

2
− 8 × 2 − 1 × −4 =

11

2
− 8 − 1 × −

1

2



A theorem about plane triangles

Let 𝐴, 𝐵, 𝐶, 𝐷, 𝑋, 𝑌 be six points, ordered counterclockwise, in the plane.
Let 𝐴𝐵𝐶, 𝐴𝐵𝐷, 𝐴𝐶𝐷, 𝐵𝐶𝐷, be the four triangles formed on points 𝐴, 𝐵, 𝐶, 𝐷, with areas 𝐴𝐵𝐶  
etc. 
Let ∆𝐴, ∆𝐵 , ∆𝐶 , ∆𝐷, be the four triangle areas formed by joining edge 𝑋𝑌 to points 𝐴, 𝐵, 𝐶, 𝐷, 
respectively.
Then 

𝐴𝐵𝐶 ∆𝐷 − 𝐴𝐵𝐷 ∆𝐶 + 𝐴𝐶𝐷 ∆𝐵 − 𝐵𝐶𝐷 ∆𝐴= 0.

Without loss of generality, let 𝑋, 𝑌  be the points (0,0)  and 2,0 .

Now the areas ∆𝐴, etc are just the vertical coordinates of 𝐴, 𝐵, 𝐶, 𝐷, 
respectively. 

The identity can be confirmed using the Shoelace formula.

𝑋(0,0)        𝑌 2,0

𝐴

𝐵
𝐶

𝐷



Bisection envelopes (polygons)

Involve, Vol. 8 (2015) 307–328

Bisection-convex: any bisecting straight 
line intersects the curve in exactly two 
points

✓




Strictly bisection-convex curves

Involve, Vol. 8 (2015) 307–328



That IVT 2-pancakes issue again…
𝐴(𝜃)

Involve, Vol. 8 (2015) 307–328

✓

??

𝐵(𝜃)



Is this polygon bisection-convex?

Maybe…

Or maybe not…

For any straight line bisecting the polygon, 
does it intersect the boundary in more than 
two points

How can we systematically check every bisecting line?
A certificate of non-bisection-convexity is easy to describe 
– what about a certificate of bisection-convexity?
Is this even algorithmic?



A characterisation

Let 𝑃 be a polygon. For each vertex 𝑣 of 𝑃 let 
the unique straight line through 𝑣 bisecting 𝑃 
be given as 𝒓𝑣. Then 𝑃 is bisection-convex if 
and only if no 𝒓𝑣 intersects the boundary of 𝑃 
in three or more points.

A certificate of bisection-convexity is a collection of 𝑛 
bisecting lines 𝒓𝑣 which all lie within the boundary of 𝑃. 

However, requires an effective test for a line to bisect 𝑃.



What is ‘bisecting’?

The line 𝒓3 bisects by joining vertex 3 to an opposite 
edge. However, this line extends to meet the polygon 
boundary elsewhere. 

All five lines from vertex 0 ‘bisect’, in the sense 
that the two ‘half’ polygons joining the end-points 
of the lines both compute (Shoelace formula) half 
the area.



Is bisecting vector 𝑟 crossed by edge 𝑥𝑦?

Once again the cross product is the needed 
resource.
If vector 𝑟 from vertex 𝒗𝑖 crosses edge 𝑥𝑦 then

(−𝒗𝑖 + 𝐱) × 𝒓 and (−𝒗𝑖 + 𝐲) × 𝒓 
will have different signs.
Luckily the sequence of cross products for the 
polygon edges lying counterclockwise from 𝒗𝑖 may 
all be calculated from the edges of the triangle 
area matrix ∆𝑖,𝑗



What more can we say about ∆𝑖,𝑗?

The matrix ∆𝑖,𝑗 has rank 3, therefore 𝑛 − 3 zero eigenvalues. 

It is easy to calculate the corresponding eigenvectors using 
the plane triangle theorem.

The rows of ∆𝑖,𝑗 all sum to the area of the polygon, because 

the 𝑖-th row  partitions the polygon into triangles subtended 
from vertex 𝑖. The area is therefore also an eigenvalue of 
∆𝑖,𝑗. The corresponding eigenvector is the all-ones vector.

There remain two eigenvalues which are the (complex) 
roots of a quadratic polynomial. These are mysterious to 
me.



The characteristic polynomial puzzle

Characteristic polynomial of triangle areas matrix for 
𝑛-vertex polygon with area 𝑃 is (apparently) 

det 𝐴 − 𝑞𝐼 = 𝑞𝑛−3(𝑞 − 𝑃)(𝑞 + Τ𝑃 2 ± 𝛼𝑖)

What is 𝛼?

Char poly: 𝑞 𝑞 −
55

2
𝑞 +

55

4
±

5303

4
𝑖

1

2

3

4

5

E.g. Green triangle area 
denoted ∆12 is
1

2
10 × 5 − 6 × 1

2 = ൗ47
2

by Shoelace formula.

Triangle areas matrix  

∆𝑖𝑗 𝑖=1…𝑛
𝑗=𝑖+1…𝑛−2+𝑖
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