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Falling ladder, hidden contraption

J. M. Selig

A colleague told me about a conversation she had had with a Hungarian
mathematician. This guy wanted to illustrate what he thought was a ‘Hun-
garian’ approach to mathematics as opposed to what he thought of as an
‘Anglo-Saxon’ style.

Apparently he asked my colleague to solve the following problem: A
ladder rests against a vertical wall. Suddenly, for undisclosed reasons, the
friction between the ladder and the wall and floor disappears, so the ladder
falls. As it falls it never loses contact with the wall or the floor. What curve
does the centre point of the ladder trace as it falls?

Figure 1: A ladder falling down a wall.

My colleague dutifully drew a sketch, probably something like Figure 1,
wrote down some equations and solved the problem. “Aha! You see. A
Hungarian mathematician would have immediately spotted that the figure
looks like the theorem in Euclidean geometry that says that the angle in a
semicircle is a right-angle and so the path of the point is obviously a circle.”

I would have approached this problem completely differently. To begin
with, I would have tried to annoy the guy by asking for the shape of the
trajectory of any other point on the ladder. Its an ellipse; I’ll explain
later why I know this. First I want to say something about rigid-body
displacements.
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1 Planar Rigid-Body Displacements

To my mind the ladder is not just a line but a rigid-body. It only moves
in a vertical plane, so we only need to consider rigid-body displacements in
the plane.

Rigid-body displacements are displacement that preserve the Euclidean
distance between points. Examples are rotations, translations and reflec-
tions. In fact, it can be shown that all rigid-body displacements are combi-
nations of these three. Reflections will not be considered here, since these
cannot result from any physical operation we can do to a body, such as
a ladder. When we ignore the reflections we should really talk of proper
rigid-body displacements, but the qualifier, ‘proper’ will usually be dropped
in the interests of brevity.

A rotation about the origin can be represented by a 2× 2 matrix,

R =

(
cos θ − sin θ
sin θ cos θ

)
,

where θ is the rotation angle measured positive in the anti-clockwise direc-
tion. Given a point p in the plane with coordinates (x, y), the effect of the
rotation is given by the product

R~p =

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

In this representation a translation by a vector ~t = (tx, ty) is given by simply
adding the translation vector to the position vector of the point ~p + ~t. A
slightly neater way to represent rotations and translations is to use 3 × 3
matrices. Now, a rotation about the origin is given by the matrix

R̃ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 and a translation by T̃ =

1 0 tx
0 1 ty
0 0 1

 .

In order to represent the action of these displacements on points in the plane
we need to extend the position vectors to 3-component vectors,

p̃ =

xy
1

 ;

the final 1 here is not the z-component of anything.
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The actions of the displacements on points are given by the matrix-
vector multiplications for the rotation,xy

1

 7−→

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

xy
1

 =

x cos θ − y sin θ
y sin θ + x cos θ

1

 .

The action of a translation isxy
1

 7−→

1 0 tx
0 1 ty
0 0 1

xy
1

 =

x+ tx
y + ty

1

 .

As mentioned above, all proper rigid-body displacements can be thought of
as compositions of rotations and translations. It is not difficult to see from
the above that such displacements can be represented by products of the
3× 3 rotation and translation matrices described. These displacements do
not commute; the order that they are performed in is important. When
multiplying these matrices the first operation is the rightmost matrix. So,
if we want to perform a rotation by θ followed by a translation by ~t, the
matrix representing the overall displacement will be1 0 tx

0 1 ty
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 .

Performing the operation in the other order would givecos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 0 tx
0 1 ty
0 0 1

 =

cos θ − sin θ tx cos θ − ty sin θ
sin θ cos θ tx sin θ + ty cos θ

0 0 1

 .

2 Motion of the Ladder

The motion of the ladder as it falls can be thought of as a combination of
two simple motions. If the ladder is initially vertical then we can think of it
rotating about the origin. Of course, this motion is only imagined since it
would put the ladder inside the wall. This rotation must be combined with
a translation in the x-direction, the magnitude of this translation must keep
the top of the ladder on the vertical wall. So, if the rotation of the ladder
about the origin is given by

R̃ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

; the translation will be T̃ =

1 0 2l sin θ
0 1 0
0 0 1

,
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where 2l is the length of the ladder. The motion of the ladder is thus the
combination1 0 2l sin θ

0 1 0
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

cos θ − sin θ 2l sin θ
sin θ cos θ 0

0 0 1

 .

The mid-point of the ladder is initially located at the point (0, l) and
hence its trajectory will be given bycos θ − sin θ 2l sin θ

sin θ cos θ 0
0 0 1

0
l
1

 =

l sin θl cos θ
1

 .

This is clearly a circle centred at the origin with radius l. The direction in
which the circle is traced can be seen to be clockwise. What about other
points on the ladder? What about a point that is initially at position (0, h)?
We get cos θ − sin θ 2l sin θ

sin θ cos θ 0
0 0 1

0
h
1

 =

(2l − h) sin θ
h cos θ

1

 .

This is an ellipse satisfying the equation

x2

a2
+
y2

b2
= 1,

where a = (2l− h) and b = h. The eccentricity, e, of this ellipse is given by

e =
√

1− b2/a2 if a > b and e =
√

1− a2/b2 if b > a.

This is so that 0 < e < 1 unless the ellipse is actually a circle, in which case
e = 0. If the point we are considering is less than half-way up the ladder,
h < l, so that (2l − h) > h and the eccentricity of the ellipse is

e =
2

2(l/h)− 1

√
(l/h)2 − (l/h).

If our point is between the mid-point and the top of the ladder, then h >
(2l − h). In this case the eccentricity of the ellipse will be

e = 2
√

(l/h)− (l/h)2.
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More generally, we can imagine attaching pieces to the ladder and asking
about paths of points on these extensions. Suppose (x0, y0) are the initial
coordinates of some point on this enlarged ladder. Its trajectory as the
ladder falls is given bycos θ − sin θ 2l sin θ

sin θ cos θ 0
0 0 1

x0y0
1

 =

x0 cos θ + (2l − y0) sin θ
x0 sin θ + y0 cos θ

1

 .

Writing

x = x0 cos θ + (2l − y0) sin θ and y = x0 sin θ + y0 cos θ

for general points on the trajectory, we can see that

cos θ =
xx0 + y(y0 − 2l)

x20 + y20 − 2ly0
, sin θ =

yx0 − xy0
x20 + y20 − 2ly0

.

Hence, as the ladder falls, the point follows the curve given by the equation(
xx0 + y(y0 − 2l)

)2
+
(
yx0 − xy0

)2
=
(
x20 + y20 − 2ly0

)2
.

This is the equation of an ellipse centred at the origin but where the semi-
major axis is not aligned with the x- or y-axis.

3 The Elliptic Trammel

Suppose you want to draw an ellipse, how would you do that? Most of us
are taught at school that you can draw an ellipse by attaching a piece of
string to a pair of fixed points, drawing pins (thumb tacks), for example.
Then looping the string around a pencil and drawing the curve with the
string held tight. Many of us have even tried this and can therefore confirm
that it is a terrible way to draw an ellipse—the string stretches and the
pencil wobbles. The point is not really that you can draw a nice ellipse
like this but it shows you that the ellipse is the curve where the sum of the
distances to a pair of fixed points is constant.

But suppose you really did want to draw an ellipse. Say you wanted to
carve a elliptical shaped arch out of a block of solid stone to put above a
window or door. Or maybe you are making a technical drawing in the days
before CAD. How would you really draw an ellipse? The answer is: use
an ellipsograph. This was a device based on the trammel of Archimedes.
According to Wikipedia this is a mechanism that: ‘consists of two shuttles
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which are confined (‘trammeled’) to perpendicular channels or rails and a
rod which is attached to the shuttles by pivots at fixed positions along the
rod.’ See [1]. Examples of these devices used to be on display at the Science
Museum in London, see [2].

The mechanism has many other names including the ‘do nothing ma-
chine’, presumably because when people came across this machine more
recently they were unaware or indifferent to its uses.

This is why I knew that the paths of other points on the ladder traced
ellipses. Anyone familiar with the kinematics of planar mechanisms would
have immediately recognised the motion of the ladder as the same as the
motion of the moving bar in the elliptic trammel!

Yet another view of the geometry of this device can be seen in the
YouTube video [3].
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Problem 319.1 – Sum
Tony Forbes
For positive integer r, show that

1

r2 + (r + 1)2
+

1

(3r + 1)2 + (3r + 2)2
+

1

(5r + 2)2 + (5r + 3)2
+ . . .

=
π

4r + 2
tanh

π

4r + 2
.

https://en.wikipedia.org/wiki/Trammel_of_Archimedes
https://collection.sciencemuseumgroup.org.uk/objects/co60175/elliptic-trammels-curve-drawing-instruments-elliptical-trammels
https://collection.sciencemuseumgroup.org.uk/objects/co60175/elliptic-trammels-curve-drawing-instruments-elliptical-trammels
https://collection.sciencemuseumgroup.org.uk/objects/co60175/elliptic-trammels-curve-drawing-instruments-elliptical-trammels
https://www.youtube.com/watch?v=7Fn-26Jmi5E
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Solution 317.3 – Eight triangles
Denote the area of a triangle with vertices X, Y , Z by
4(X,Y, Z). (i) A circle has the six points A, B, C, D, E,
F in that order on its circumference. Show that

4(A,B,C)4(D,E, F )−4(A,B,D)4(C,E, F )

+ 4(A,C,D)4(B,E, F )−4(B,C,D)4(A,E, F ) = 0.

More generally, show that this holds for any convex shape.
(ii) Even more generally, choose any six points in the plane, A,
B, C, D, E, F . Show that∏

ε1, ε2, ε3 = ±1

(
4(A,B,C)4(D,E, F ) + ε14(A,B,D)4(C,E, F )

+ ε24(A,C,D)4(B,E, F ) + ε34(B,C,D)4(A,E, F )
)

= 0,

or find a counter-example.

Robin Whitty

(i) We illustrate the problem in the following plot.

A

B

C

D

E

F
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The problem proposes that we take a weighted sum of the triangle areas

ABC and ACD and subtract off a weighted sum of the areas of ABD and

BCD. If all the weights were unity, the result would automatically be zero

because ABC and ACD form a quadrilateral and ABD and BCD will

subtract off the same quadrilateral. But the weights are areas of different

triangles on base edge EF . So it seems surprising that the zero sum should

be preserved.

We are free to position the triangle edge EF on the vertical axis and to

scale our configuration so that the length of EF is 2. Then the weight given

to triangle ABC is precisely the height of triangle EFD, and so on: in the

weighted sum, the weight of each triangle on the points A,B,C,D is the

horizontal coordinate of the point excluded from it. If we take point A to

have coordinates (xA, yA), etc, then we can restate the problem, reordering

the terms slightly, as asking for a proof that

xA∆(BCD)− xB∆(ACD) + xC∆(ABD)− xD∆(ABC) = 0. (1)

We may collect the coordinates of A,B,C,D into a 3× 4 matrix:

X =

 1 1 1 1

xA xB xC xD
yA yB yC yD

 .

The determinant of any 3 × 3 submatrix of X is twice the area of the

triangle formed on the corresponding points, taken in anticlockwise order.

(In fact this generalises to simplexes of any dimension, and the version for

tetrahedral volume was featured in Problem 316.6 in a preceding issue of

M500.)

And now we may see that various zero weighted sums of areas come

directly from Cramer’s Rule for solving linear equations (M500, issue 262,

page 7, if you have your back numbers to hand).

It is convenient to have a square matrix, so add an initial row of zeros

to matrix X to give a 4 × 4 matrix W . Write Mi,j for the determinant of

the submatrix obtained from W by deleting the i-th row and j-th column

and write C for the 4 × 4 matrix whose ij-th entry is (−1)i+jMi,j . Then

Cramer’s Rule says that multiplying W by the transpose of C gives the

identity matrix multiplied by the determinant of W . For our matrix W ,
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this determinant is zero, so we can write:

WCT =


0 0 0 0

1 1 1 1

xA xB xC xD
yA yB yC yD

×


M1,1

−M1,2 . . .

M1,3

−M1,4



=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 . (2)

In the first column of zeros in the right-hand side matrix, the entry in row 2

tells us that the weighted area sum with all weights unity is zero:

1×∆(BCD)− 1×∆(ACD) + 1×∆(ABD)− 1×∆(ABC) = 0;

the entry in row 3 is precisely equation (1); the entry in row 4 tells us that

zero is preserved if the weights are the vertical coordinates of the ‘missing’

points instead of the horizontal coordinates.

(ii) The Cramer’s Rule calculation supplies a positive answer to part

(ii) of this problem. If the points in the above figure are ordered differently

then two things happen: geometrically, the pairings of triangles forming the

same quadrilateral need not be the same as before; and algebraically, the

3 × 3 determinants in matrix X may become negative (the triangle points

are being taken in clockwise order). Nevertheless, equation (2) still holds

and allows us to read off the values of the εi which supply a zero factor for

the product.

In fact, the same applies to simplexes of any dimension: the volumes

of the five tetrahedra formed on five points in three dimensions also form a

zero alternating sum, for instance. Again, however, the volumes are ‘signed’

according to the orientations of the tetrahedra. This is why the determinant

formula for tetrahedral volume applies the absolute value function (and this

is what is played upon in Problem 316.6 in M500). Again the product

formulation in part (ii) of the problem offers an appropriate way of saying

‘there is a choice of signs for which the sum of the volumes is zero’.
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Solution 315.1 – Rectangles in a square
How many 1× (n+ 1) rectangles can you fit in an n×n square?

Obviously fitting any at all might be a bit difficult when n = 1 or
2. But as n increases the difference between n and

√
2n becomes

more and more significant.

Ted Gore

A B

CD
E

F

G

H

I

J

Let CJ = AI = x. Let IJ = y. Let y = m(n+ 1), where m is the number
of rectangles of length n+ 1 that can be placed sequentially along IJ . Let
EF = GH = k, where k is the number of rectangles of width 1 that can be
placed side by side along IJ .

We have cot(π/4) = 1 = 2x/k, so that x = k/2. Then

√
2n = y + 2x = m(n+ 1) + k

and

n =
m+ k√
2−m

.

But n cannot be negative; so m cannot be greater than 1. When m = 1
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and k = 1 we get

n =
2√

2− 1
= 4.8284.

We can, however, fit k rectangles of width 1 side by side. For example k = 2
gives

n =
3√

2− 1
= 7.2426

and k = 3 gives

n =
4√

2− 1
= 9.6569.

Solution 314.4 – A triangle and a circle

A circle that passes through A and
B of equilateral triangle ABC meets
BC at D.

The length of |AD| is 1.

What’s the area of the circle?

O

E

F

A

B CD

Ted Gore
Construct the perpendicular bisector of AD. The bisector passes through
O, the centre of the circle. Extend it to meet the circle in the point E.

Then ABDE is a cyclic quadrilateral in which the angles ABD and
DEA are supplementary. Since 4ABC is equilateral, ∠ABC = π/3 and
∠ABD = 2π/3. Thus ∠DEA = π/3 and ∠DOA = 2π/3 by the Central
Angle Theorem.

Let F be the mid point of DA. We have ∠FOA = π/3 and OA = r,
where r is the radius of the circle. From this we get

r =
1

2 sin(π/3)
=

1√
3

= 0.57735026919,

and the area of the circle is π/3 = 1.0471975512.
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Solution 316.7 – Cubes
A 5×5×5 cube is partitioned into 125 1×1×1 subcubes of which
five are coloured red. The other 120 are coloured something
other than red. Each 1× 5× 5 slice of the cube contains exactly
one red subcube. In how many ways can this be done?

Reinhardt Messerschmidt

Introduction

We will show that if n ∈ {3, 4, 5} then the number of such colourings of an
n× n× n cube, allowing for rotational symmetries, is

1

24

(
(n!)2 + 6(n!) + 8

(
1 + 2

(
n

3

)))
=


4 if n = 3

33 if n = 4

637 if n = 5.

Preliminaries

The cube can be represented with the set

A = {1, . . . , n} × {1, . . . , n} × {1, . . . , n}.

A colouring is a subset C of A consisting of n points

(x1, y1, z1), . . . , (xn, yn, zn)

such that x1, . . . , xn are distinct, y1, . . . , yn are distinct, and z1, . . . , zn are
distinct. Let C be the set of all colourings.

Let G be the group of rotational symmetries of the cube. This group
has 24 elements, which can be categorized as follows:

• The identity rotation: There is 1 element in this category.

• Face rotations: The rotations around an axis through the midpoints of
two opposite faces. There are three such axes and three magnitudes of
rotation (90◦, 180◦ and 270◦); therefore this category has 9 elements.

• Edge rotations: The rotations around an axis through the midpoints
of two opposite edges. There are six such axes and one magnitude of
rotation (180◦); therefore this category has 6 elements.

• Vertex rotations: The rotations around an axis through two oppo-
site vertices (in other words, around a diagonal of the cube). There
are four such axes and two magnitudes of rotation (120◦ and 240◦);
therefore this category has 8 elements.
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Let ∼ be the relation on C defined by

C1 ∼ C2 ⇐⇒ σ(C1) = C2 for some σ ∈ G.

This is an equivalence relation. Its equivalence classes are called orbits.

Outline

We want to find the number of orbits of ∼. By Burnside’s lemma, this is
equal to

1

|G|
∑
σ∈G

∣∣Fix(σ)
∣∣,

where
Fix(σ) =

{
C ∈ C : σ(C) = C

}
.

We know that |G| = 24; therefore it remains for us to find |Fix(σ)| for each
σ ∈ G.

The identity rotation

Suppose σ is the identity rotation. Clearly, Fix(σ) = C. The following
procedure generates all the elements of C:

� Choose
y1 ∈ {1, . . . , n}, z1 ∈ {1, . . . , n}.

This can be done in n2 ways.

� Choose

y2 ∈ {1, . . . , n} − {y1}, z2 ∈ {1, . . . , n} − {z1}.

This can be done in (n− 1)2 ways.

� . . .

� Choose

yn ∈ {1, . . . , n}−{y1, . . . , yn−1}, zn ∈ {1, . . . , n}−{z1, . . . , zn−1}.

This can be done in 1 way.

� Form the colouring

(1, y1, z1), (2, y2, z2), . . . , (n, yn, zn).

It follows that ∣∣Fix(σ)
∣∣ = |C| = n2(n− 1)2 · · · 1 = (n!)2.
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Face rotations

Suppose σ is the 90◦ clockwise rotation around the axis through the points(
1,

n+ 1

2
,
n+ 1

2

)
,

(
n,

n+ 1

2
,
n+ 1

2

)
,

as viewed from the first point towards the second point. In other words,

σ
(
(x, y, z)

)
= (x, n− z + 1, y).

If C is the colouring

(1, y1, z1), . . . , (n, yn, zn),

then σ(C) is

(1, n− z1 + 1, y1), . . . , (n, n− zn + 1, yn);

therefore

σ(C) = C ⇐⇒ yr = n− zr + 1 and yr = zr for every r ∈ {1, . . . , n}
⇐⇒ yr = zr = (n+ 1)/2 for every r ∈ {1, . . . , n}.

No valid colouring satisfies this condition, because y1, . . . , yn have to be
distinct. It follows that ∣∣Fix(σ)

∣∣ = 0.

The same holds for all the other face rotations.

Edge rotations

Suppose σ is the 180◦ rotation around the axis through the points(
n+ 1

2
, 1, 1

)
,

(
n+ 1

2
, n, n

)
.

In other words,
σ
(
(x, y, z)

)
= (n− x+ 1, z, y).

If C is the colouring

(1, y1, z1), . . . , (n, yn, zn),

then σ(C) is
(1, zn, yn), . . . , (n, z1, y1);
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therefore

σ(C) = C ⇐⇒ zr = yn−r+1 for every r ∈ {1, . . . , n};

therefore Fix(σ) consists of all colourings of the form

(1, y1, yn), (2, y2, yn−1), . . . , (n, yn, y1),

where y1, . . . , yn are distinct elements of {1, . . . , n}. It follows that∣∣Fix(σ)
∣∣ = n! .

The same holds for all the other edge rotations.

Vertex rotations

Suppose σ is the 120◦ clockwise rotation around the axis through the points
(1, 1, 1) and (n, n, n), as viewed from (1, 1, 1) towards (n, n, n). In other
words,

σ
(
(x, y, z)

)
= (z, x, y).

One element of Fix(σ) is

(1, 1, 1), (2, 2, 2), . . . , (n, n, n).

The following procedure generates all the other elements of Fix(σ), remem-
bering that n ∈ {3, 4, 5}:

� Choose distinct r, s, t ∈ {1, . . . , n}. The number of ways that this can
be done is (

n

3

)
.

� Form the two colourings

(r, s, t), (t, r, s), (s, t, r), (u, u, u), u ∈ {1, . . . , n}−{r, s, t}

and

(r, t, s), (s, r, t), (t, s, r), (u, u, u), u ∈ {1, . . . , n}−{r, s, t}.

It follows that ∣∣Fix(σ)
∣∣ = 1 + 2

(
n

3

)
.

The same holds for all the other vertex rotations.
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The relativistic mass formula near light speed

Mako Sawin

Introduction

In the pursuit of understanding the profound implications of Einstein’s the-
ory of special relativity, one encounters the intriguing concept of relativistic
mass increase as objects approach the speed of light. The formula govern-
ing this phenomenon, m = m0/

√
1− v2/c2, encapsulates the essence of how

mass dynamically changes with velocity. However, this article sets out to
investigate the behaviour of the relativistic mass formula specifically when
objects accelerate close to, or even potentially exceed, the speed of light.

Through mathematical analysis, we aim to shed light on the implications
and insights derived from this exploration, offering a deeper understanding
of the interplay between mass and velocity in extreme regimes.

The formula for relativistic mass increase is given by

m =
m0√

1−
(v
c

)2 , (1)

where

m is the relativistic mass,

m0 is the rest mass (mass of the object when it’s at rest),

v is the velocity of the object,

c is the speed of light in a vacuum (exactly 299, 792, 458 metres per
second by definition of the metre).

As the velocity v approaches the speed of light c, the denominator ap-
proaches zero, causing the relativistic mass m to increase towards infinity.

Part 1

We presume that we have a mass m0 of 1 kilogram, and its velocity is
approaching the speed of light, v = 2.990 × 108 metres per second. For
simplicity, let’s consider the speed of light c as 3.000×108 metres per second.
Therefore

m =
1√

1−
(

2.990× 108

3.000× 108

)2
≈ 12.26 kg
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Part 2

Let’s presume that the mass exceeds the speed of light by 0.010×108 metres
per second, v = 3.010× 108. Then

m =
1√

1−
(

3.010× 108

3.000× 108

)2
=

1√
−0.006678

≈ 12.24 i kg.

In examining the relativistic mass formula under varied velocity conditions,
our investigation reveals intriguing outcomes. When the velocity approaches
the speed of light by a marginal increment of 106 metres per second, the
resulting relativistic mass reaches approximately 12.26 kg, showcasing the
significant impact of relativistic effects even at modest velocities. However,
when the velocity exceeds the speed of light by 106 metres per second, the
formula yields an imaginary value ≈ 12.24 i kg, hinting at the theoretical
constraints imposed by the laws of physics.

These contrasting outcomes underscore the delicate balance between
theory and practical application in relativistic scenarios. While the formula
elucidates the transformative effects of velocity on mass, it also underscores
the theoretical boundaries inherent in relativistic physics. Our exploration
underscores the necessity for nuanced interpretations and further investiga-
tion to unravel the complexities of mass-velocity relationships in the rela-
tivistic regime.

Problem 319.2 – Permutations
Tony Forbes
Let n be a positive integer and let P be a permutation of {1, 2, . . . , n2} that
contains no increasing or decreasing subsequence of length n+1. Show that
the first and last elements of P must be at least n.

Problem 319.3 – Sum
Show that

1

1 · 3 · 5
+

1

7 · 9 · 11
+

1

13 · 15 · 17
+ . . . =

log 3

16
.

The factors in the denominators run through the odd positive integers.
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Solution 316.4 – Goat
There is a field bounded
by the function coshx
with its y-axis pointing
north. A goat is teth-
ered to (0, 1) by a rope of
length sinh 1 and the an-
imal is otherwise free to
graze south of the curve.
What is the area of the
part of the field that the
goat can access?

Tony Forbes

0 1
sinh 1

y = cosh x

Recall that I claimed that this problem admits an exact answer involving
only elementary functions. For the area, we have

A = A1 + 2A2,

where A1 is a semicircle of radius sinh 1, and A2 is the area bounded by
coshx, the blue curve from (1, cosh 1) to (sinh 1, 1) and the line from (0, 1)
to (sinh 1, 1). Clearly,

A1 =
π(sinh 1)2

2
= 2.16942,

and it remains to compute the non-trivial part, A2.
Let’s do some high-school calculus. Suppose u ∈ (0, 1) and consider

what happens when we advance from u to u+du, corresponding to the goat
moving from G to H along the blue curve. There is a diagram on the next
page.

Ignoring terms involving (du)2 and higher powers, we see that the tether
sweeps out an area that is approximately a right-angled triangle with sides
sinh 1− sinhu and |GH|. To compute |GH|, we have

a(u)2 + b(u)2 = (sinh 1− sinhu)2,

b(u) = a(u) cosh′(u) = a(u) sinhu,

which can be solved to get

a(u) =
sinh 1− sinhu

coshu
.
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Moreover, noting that a′(u) ≤ −1 for u ∈ [0, 1],

|GI| = u+ a(u)− (u+ du+ a(u+ du)) = − (a′(u) + 1) du,

|IH| =
|GI|

sinhu
= − a′(u) + 1

sinhu
du,

|GH| =
√
|GI|2 + |IH|2 = − a′(u) + 1

tanhu
du,

and the area of ‘triangle’ UGHV is approximately

dA2 =
1

2
|GH|(sinh 1− sinhu) =

(a′(u) + 1)(sinhu− sinh 1)

2 tanhu
du

=
(e2 − 2e sinh(u)− 1)2

8e2 coshu
du,

which can be integrated to get

A2 =

∫ 1

0

(e2 − 2e sinh(u)− 1)2

8e2 coshu
du

=
1

4e2

(
(e4 − 6e2 + 1) arctan

(
e− 1

e+ 1

)
+ (e3 − e) log

(
4e3

(1 + e2)2

))
= 0.242792.

1
0 u u+du 1 sinh 1

sinh 1 - sinh u

sinh 1 - sinhHu + duL

U

V

aHuL

bHuL

Q

P

G

H

I

y = cosh x
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Eigenvalues of certain matrices
Tony Forbes
Here is something interesting the motivation for which was a short article by
Nick Trefethen: Discrete and Continuous, LMS Newsletter 510 (Feb 2024).

Let n be a positive integer. For k = 1, 2, . . . , 2n, construct a (2n+ 1)×
(2n+ 1) matrix M(n, k) as follows.

The elements on the main diagonal are n, n− 1, . . . , 0, 1, . . . , n.

The elements on the k diagonals immediately above and immediately
below the main diagonal are all 1.

All other elements are zero.

For example, this what M(7, 4) looks like:

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 6 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 5 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 4 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 3 1 1 1 1 0 0 0 0 0 0
0 1 1 1 1 2 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 2 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 3 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 4 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 5 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 6 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 7



.

We are interested in the two largest eigenvalues. Unless k = 0 or the
matrix is small, computing eigenvalues can be a tricky process, which is best
left to Mathematica. When n = 7 the calculations yield the following.

k = 1 7.74619 7.74619 k = 2 8.53687 8.53258
k = 3 9.41968 9.25581 k = 4 10.5384 9.72839
k = 5 11.7651 9.86893 k = 6 12.938 9.72687
k = 7 14 9.37665 k = 8 14.9373 8.98803
k = 9 15.7537 8.59848 k = 10 16.4557 8.20740
k = 11 17.0440 7.81361 k = 12 17.5142 7.41421
k = 13 17.8550 7 k = 14 18.0453 6



M500 319 Page 21

What stands out quite prominently is that the two largest eigenvalues of
M(7, 1) are very nearly equal. Thereafter, the largest eigenvalue of M(7, k)
increases as k increases. However, the other one behaves differently. The
second eigenvalue increases whilst trying to maintain near equality with the
first. It reaches a maximum at k = 5, then decreases to 7 at k = 13 and 6
at k = 14.

The effect is more striking when shown graphically for a large n, as
illustrated below for n = 50.

20 40 60 80 100

60

80

100

120

The two largest eigenvalues of M(50, k) for k = 1, 2, . . . , 100.

We invite the reader to prove three theorems suggested by the entries for
k = 7, 13 and 14 in the table on the previous page.

(i) The largest eigenvalue of M(n, n) is 2n.

(ii) The second-largest eigenvalue of M(n, 2n− 1) is n.

(iii) The second-largest eigenvalue of M(n, 2n) is n− 1.

Problem 319.4 – Points in a disc
There are 7 points in the unit disc {(x, y) : x2 + y2 ≤ 1}. Show that either
one of the points is the centre of the disc, or there are two points that
separated by distance less than 1.
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Getting our ducks in a row

Danny Roach

“Where’s the Ducks?”

This was the question with which I hit Jenny, our patient OU tutor,

upon my return from lunch on the afternoon of the third day of the M500

Society’s annual Maths revision weekend.

“Ah, so you’ve been speaking to last year’s students then?” she queried

with a smile.

What’s this got to do with a mathematics weekend? Well stick with me

and I’ll tell you more on the ducks later . . .

Every year, the M500 Society runs a revision weekend, covering the

majority of the courses run that year. Anyone can attend, and with my

exam looming I had registered to attend the sessions covering MST124 –

Essential Mathematics 1. Having little formal mathematical background, I

figured I needed all the help I could get to pass the exam well and so this

for me was something I could not afford to miss.

When I arrived on Friday evening I was warmly welcomed but was

surprised at the small class size. There were a diverse mix of backgrounds

amongst the 8 people on the MST124 revision stream, although I’d estimate

there were a few hundred delegates in total studying various different maths

courses. Given the number of students studying MST124 (it’s a compulsory

module in many OU Maths and Physics degrees) I was surprised at the low

take up and wondered, do people actually know this weekend exists? That’s

in part why I wanted to write this piece, as I and my classmates, found this

weekend invaluable.

Jenny Oldroyd was our tutor and from the moment we set foot in the

classroom on Friday evening she was warm, entertaining, patient, and clear.

She explained things that I’ve vaguely learned from the module material this

year, but now understand much more thoroughly due to the nature of a face-

to-face tutorial session – OU take note, we could do with some face-to-face

tutorial options, even if it’s only 4 or 5 sessions per year. I can’t emphasis

enough what a huge difference it has made, really solidifying my learning

in some of my personal nemesis topics – Integration by Parts, Binomial

Expansion, that’s you I’m talking about!
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There were also plenty of revision and exam tactics discussed, and some

helpful calculator hints, for example, if you have two calculators have one set

up in radians and one in degrees (and label them) to save time and reduce

errors during the exam. I’ve discovered my calculator can do so much more

than arithmetic thanks to this weekend!

The classroom dynamic was fun with plenty of banter between students

and teacher, as we students competed with each other for the coveted title

of ‘Who can ask the most inane question?’ By the end of the third day we

had built a natural bond and all swapped email addresses. I’m sure some

of us will stay in touch as we continue our OU journeys.

The organisation, led by Judith from the M500 Society, was superb, as

was the venue. The Kents Hill Conference Centre which is adjacent to the

OU MK campus was a great choice, with clean bright rooms, good food and

drink, and nice open spaces in which to take advantage of this years first

real sight of the Sun (for this Northern boy). Speaking of Northern, several

students also saw the Northern Lights on the Friday evening and shared

some stunning photos on social media.

The cost was very reasonable too. For two nights full board, including

tea/coffee/snacks during the day, breakfast, dinner and tea (southerners

note, that’s the correct name for the three meals), it was £295 – this included

around 15 hours of mathematics tuition, which I think is outstanding value.

There were other options for those who didn’t wish to stay over which

reduced the cost further. So, what about those ducks?

Well Jenny gave out small rubber ducks last year to her cohort, explain-

ing that it helps to say maths out loud as you’re doing it and reduces the

chance of a mistake. Not everyone has someone there to be able to talk

to, and so she advocates, ‘say it to the duck.’ As a former programmer

who always verbalises difficult problems, I can confirm that this is a great

method to help eliminate small mistakes like getting minus’s wrong.

Chanting “Three minus minus two is five.” Really helps avoid those

silly errors, although I characteristically managed to throw some in this

weekend, just to keep Jenny on her toes!

Although Jenny had forgotten to bring her ducks with her this year, I

already have one of my own which was bought for me by my eldest daughter.

I will now keep him on my desk for future maths conversation and validation.
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My thanks to everyone at the M500 Society for a superbly run weekend.

I’ve learned maths I didn’t know, solidified things I thought I knew and done

it all with a smile and a laugh with some new friends. I can’t recommend

this weekend enough, everyone who I met had the same silly grin on their

face, and went away with a new found confidence in their maths. And that

is about as good an outcome as you can get.

Dan Roach is an IT Consultant, Flight Instructor and Open University

physics undergraduate based in the North West, UK. He is the author of In-

side the Cyclone and blogs about aviation, space and science at danroachau-

thor.co.uk. You can follow him on X, @dannydenfisch or on Facebook, @dan-

roachauthor,

http://danroachauthor.co.uk,

http://facebook.com/danroachauthor.

Available now: Inside the Cyclone on Amazon in paperback and Kindle e-book.

Letter
M500 217
Hi Tony,

Looking at the integration by parts on page 18 of M500 317 reminds
me of similar treatment I did and submitted previously. My thoughts at
the time was the format for a computer project that I was working on. For
comparison of this mathematical treatment, readers may wish to look at
these previous issues:

249, page 12: The CDF of a Standard Normal Distribution.

256, page 1: The Chi-Squared Distribution.

263, page 10: Integration of Polynomial/Exponential Functions.

The relevant issues can be downloaded from the M500 website.

Secondly, looking at Problem 317.7, Nine cards: the first nine numbers
add up to an odd number; so a mathematical solution is impossible, and
therefore the solution can only be achieved by trickery. So far I have found
three ways of doing this. Invert the 6, 1 covers the 5 or 2 covers the 7.

Regards,

Ken Greatrix

http://danroachauthor.co.uk
http://facebook.com/danroachauthor
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Solution 317.5 – Approximation
Show that for small x,

exp(tanx) =

√
1 + x

1− x
+O(x5).

Thus, for example, e2 tan 0.001 ≈ 1.002002002002002.

David Sixsmith
Using standard Taylor series, we have

log

(√
1 + x

1− x

)
=

1

2
(log(1 + x)− log(1− x))

=
1

2

(
x− x2

2
+
x3

3
− x4

4
+O(x5) + x+

x2

2
+
x3

3
+
x4

4
+O(x5)

)
= x+

x3

3
+O(x5)

= tan(x) +O(x5).

Taking exponentials and, using the Taylor series for exp, we get

exp(tan(x)) = exp

(
log

(√
1 + x

1− x

)
+O(x5)

)

=

√
1 + x

1− x
.
(
1 +O(x5)

)
=

√
1 + x

1− x
+O(x5),

as required.

But this seems like cheating somehow, and not in the spirit of a nice
question. Can a solution be found that doesn’t use differentiation or Taylor
series?

Problem 319.5 – Factorial factorial
How many zeros are at the end of (n!)!?

If that’s difficult, do n! first.

If that’s difficult, try a special case, say 100!.
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Problem 319.6 – Random triangles
Tony Forbes
There are n points chosen at random in a rectangle with sides a ≥ 1 and 1.
Of the n(n− 1)(n− 2)/6 triangles that can be made from the points taken
three at a time, what is the expected number that have all three angles less
than 90 degrees.

Front cover 100 triangles in a 25× 20 rectangle, some red, some green.


	Planar Rigid-Body Displacements
	Motion of the Ladder
	The Elliptic Trammel

