THEOREM OF THE DAY

The Lindemann-Weierstrass Theorem If $\alpha_{1}, \ldots, \alpha_{n}, n \geq 1$, are algebraic numbers which are linearly independent over \mathbb{Q}, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are algebraically independent; that is, any rational polynomial $P\left(z_{1}, \ldots, z_{n}\right)$, having algebraic coefficients, for which $P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}\right)=0$, must be identically zero.

A simple application of this theorem tells us that when nonzero α is algebraic, $\cos (\alpha)$ is not, i.e. is transcendental. Observe, first, that αi solves the equation $x^{2}+\alpha^{2}=0$, and so is algebraic. Now, suppose that $\cos (\alpha)$ is an algebraic number, say, β, and define the rational polynomial $P(z)=\left(z^{2}-2 \beta z+1\right) / 2 z$. Then $P(z)$ has algebraic coefficients and is obviously not identically zero, but $P\left(e^{i \alpha}\right)=0$, via the identity $\left(e^{i z}+e^{-i z}\right) / 2=\cos z$. But then Lindemann-Weierstrass contradicts the assumption that α is algebraic. We may continue and deduce, for example, that the unique real number solution D to the equation $\cos (x)=x$ is also transcendental, since if D is algebraic and solves the equation then $\cos (D)=D$ is transcendental: another contradiction! Samuel R. Kaplan (Mathematics Magazine, Feb. 2007) tells how the number $D(\approx 0.7390851332)$ acquired the sobriquet "Dottie Number" after the wife of mathematician Paul Blanchard who drew his attention to a remarkable fact: starting from any real number x, repeated applications of the cosine function will eventually converge to D. Blanchard recognised and proved that D is a universal attractor! This is illustrated above in two dimensions by iterating the cosine for each of the pair of numbers $(x, 1-x / 100)$ for $x=1, \ldots, 100$.
Following Charles Hermite's breakthrough 1873 proof of the transcendence of e, Ferdinand von Lindemann proved in 1882 that $e^{i \tau / 2}+1=0$, $\tau=2 \pi$, implied the transcendence of $\tau / 2$, and conjectured the more general result stated above, proved by Karl Weierstrass in 1885 .

Web link: arxiv.org/abs/2306.14352

