## THEOREM OF THE DAY

i

**The Lindemann-Weierstrass Theorem** *If*  $\alpha_1, \ldots, \alpha_n$ ,  $n \ge 1$ , are algebraic numbers which are linearly independent over  $\mathbb{Q}$ , then  $e^{\alpha_1}, \ldots, e^{\alpha_n}$  are algebraically independent; that is, any rational polynomial  $P(z_1, \ldots, z_n)$ , having algebraic coefficients, for which  $P(e^{\alpha_1}, \ldots, e^{\alpha_n}) = 0$ , must be identically zero.





A simple application of this theorem tells us that when nonzero  $\alpha$  is algebraic,  $\cos(\alpha)$  is not, i.e. is transcendental. Observe, first, that  $\alpha i$  solves the equation  $x^2 + \alpha^2 = 0$ , and so is algebraic. Now, suppose that  $\cos(\alpha)$  is an algebraic number, say,  $\beta$ , and define the rational polynomial  $P(z) = (z^2 - 2\beta z + 1)/2z$ . Then P(z) has algebraic coefficients and is obviously not identically zero, but  $P(e^{i\alpha}) = 0$ , via the identity  $(e^{iz} + e^{-iz})/2 = \cos z$ . But then Lindemann-Weierstrass contradicts the assumption that  $\alpha$  is algebraic. We may continue and deduce, for example, that the unique real number solution D to the equation  $\cos(x) = x$  is also transcendental, since if D is algebraic and solves the equation then  $\cos(D) = D$  is transcendental: another contradiction! Samuel R. Kaplan (Mathematics Magazine, Feb. 2007) tells how the number D ( $\approx 0.7390851332$ ) acquired the sobriquet "Dottie Number" after the wife of mathematician Paul Blanchard who drew his attention to a remarkable fact: starting from any real number x, repeated applications of the cosine function will eventually converge to D. Blanchard recognised and proved that D is a universal attractor! This is illustrated above in two dimensions by iterating the cosine for each of the pair of numbers (x, 1 - x/100) for  $x = 1, \ldots, 100$ .

Following Charles Hermite's breakthrough 1873 proof of the transcendence of e, Ferdinand von Lindemann proved in 1882 that  $e^{i\tau/2} + 1 = 0$ ,  $\tau = 2\pi$ , implied the transcendence of  $\tau/2$ , and conjectured the more general result stated above, proved by Karl Weierstrass in 1885.

Web link: arxiv.org/abs/2306.14352

Further reading: Making Transcendence Transparent by Edward B. Burger and Robert Tubbs, Springer, 2004.





