
THEOREM OF THE DAY
Bondy’s Subset Theorem Let S be a set with n elements and suppose that n distinct subsets of S are
chosen. Then there is a restriction to n − 1 elements of S under which these subsets remain distinct.

For n = 3 we can state the theorem as:if three distinct vertices are chosen
on the cube then some projection on to one of its faces will retain three
distinct vertices. In the example below the projection on to the front face
will reduce the number of vertices to 2; but the projection onto the top face
will retain three vertices.

This geometric version of Bondy’s theorem is valid in general and is further illustrated above forn = 4 by applying his
elegant proof method to a set of vertices on the 4-cube. In fact, we will try it with n + 2 = 6 vertices, highlighted with red squares. Consider all 4-cube edges joining
these vertices: each such edge consists of a move along one ofthe four axes,x, y, z andw. Make a list of the axes involved. Starting bottom right and moving clockwise
we have:w z x w z x. Because there is a cycle, every axis must appear an even number of times in order for us to return to our starting point. So we have used 6/2 < 4
axes. But this means we can project on the missing axis, because any two vertices identified by such a projection would necessarily have been joined by a 4-cube edge.
And indeed, ‘shrinking’ ally edges in the diagram above retains six distinct vertices. However, this approach is only guaranteed to work withn vertices because in this
case either there is a cycle, or the edges joining them will form a forest which, onn vertices, will have at mostn−1 edges, guaranteeing the spare axis for our projection.
It is easy, in the above diagram, to find a path on five vertices,with four edges each taking a different axis, so that any projection will identify two vertices.

Bondy’s 1972 theorem answered a question of András Hajnal, part of a wider investigation into extremal properties of set
restrictions. Another notable example is: given a collection F of distinct vertices on then-cube, what is the largestd such that
some projection onn − d dimensions results in ad-cube. The answer, call itd(F), is a measure of the ‘density’ ofF, called
the Vapnik–Chervonenkis-dimension, an important conceptin the theory of machine learning. For example, ifF is the 6-cycle
depicted above thend(F) = 2: if we project on they andw axes we get a 2-cube (a square). A well-known bound is given by
Sauer’s Lemma: |F| ≤

∑d(F)
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(

n
i

)

. For our collectionF, Sauer’s Lemma says that|F| ≤ 1+ 4+ 6 = 11, and here we can in fact
adjoin another five vertices of the 4-cube before we necessarily have a projection onto a 3-cube.

Web link: perso.limos.fr/ffoucaud/Talks/index.html: see, e.g. the invited talk “Graph identification problems”(2MB pdf).
Further reading: Extremal Combinatorics: With Applications in Computer Science by Stasys Jukna, 2nd edition, Springer, 2011.
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