THEOREM OF THE DAY

The Second Isomorphism Theorem Suppose H is a subgroup of group G and K is a normal subgroup of G. Then HK is a group having K as a normal subgroup, $H \cap K$ is a normal subgroup of H, and there is an isomorphism from $\dot{H}/(H \cap K)$ to HK/K defined by $\dot{h}(H \cap K) \mapsto hK$.

h is odd), and (2) multiplication of cosets mirrors addition modulo 2: hK.h'K = hh'K switches coset if and only if h and h' have different parity. So cosets of $H \cap K$ must behave in exactly the same way in H. And we can see this in the Cayley graph: $H \cap K$ is the 'identity' coset consisting of all vertices (m, n), m even; there is one other coset, $b(H \cap K)$, and left multiplication by b cycles between the two.

Web link: people.reed.edu/~jerry/332/09isom.pdf

normal subgroup of *H*.

Further reading: *Classic Algebra* by P.M. Cohn, John Wiley & Sons, 2000, Chapter 9.

KEY a := (12345)b := (1254)Vertices (group elements) $(m,n) := b^m a^n = (1254)^m (12345)^n$ E.g. $(1,2) = b^1 a^2$ $=(1254)(12345)^{2}$ =(1254)(13524)=(1435)Edges (left multiplication) ▶ by *a* — by b (anticlockwise cycle)

This theorem, due in its most general form to Emmy Noether in 1927, is an easy corollary of the first isomorphism theorem. Thus, if $f : H \to HK/K$ is the surjective homomorphism $h \mapsto hK$ then and $H/\ker f \cong \operatorname{im} f$ and $\ker f = H \cap K$. It is sometimes call the 'parallelogram rule' in reference to the diagram on the right. $H \cap F$